
ABSTRACT - Best Linear Unbiased Prediction (BLUP) of
combining abilities increases the efficiency of hybrid breed-
ing programmes in maize, by combining the information
contained in the data and in the pedigree. Calculation of
BLUP requires that the variance components are known.
However, as the dispersion parameters are unknown, they
have to be estimated from the same data for which BLUP
are obtained. This can be done by Restricted Maximum
Likelihood (REML). In the present research, we estimated
variance components for additive and dominance effects
using REML. In addition, the asymptotic covariance matrix
of REML estimates of the dispersion parameters was com-
puted as the inverse of the observed information matrix. In
doing so, formulae to calculate the latter matrix in terms of
matrices related to the ‘mixed model equations’ for BLUP
are presented, which make perform in the calculations with
large data sets feasible. The model employed considers
general combining abilities of related genotypes through
the additive relationship matrix A, as well as specific com-
bining abilities through the dominance relationship matrix
D. Expressions are also given to include a variance compo-
nent due to a fertility trend and dispersion parameters for
genotype by environment interaction, into the asymptotic
covariance matrix. Data from an Argentinean maize breed-
ing program is used to illustrate the developments.

KEY WORDS: BLUP; REML; Mixed model equations; As-
ymptotic covariance matrix; Maize.

INTRODUCTION

Mixed linear models have come to play a role in
the genetic evaluation of single-cross maize hybrids.
This is due to the introduction of Best Linear Unbi-
ased Prediction (BLUP; HENDERSON, 1984) of combin-
ing abilities, and of Restricted Maximum Likelihood

estimation (REML; PATTERSON and THOMPSON, 1971) of
the genetic variance components by BERNARDO

(1994, 1996). Predictions by BLUP make use of the
information contained in the data and in the pedi-
gree. In practice, BLUP of genetic merit is calculated
by means of Henderson’s Mixed Model Equations
(MME; HENDERSON, 1984) with the true values of the
genetic and error variances replaced by their REML
estimates, as these parameters are usually unknown.
This two-stage procedure to calculate BLUP yields
unbiased estimators of linear functions of the fixed
effects and predictors of functions of random effects
(KACKAR and HARVILLE, 1981). Nonetheless, the vari-
ability of BLUP increases due to the replacement of
the variance components by their REML estimates
(HARVILLE, 1985). On one hand, the use of genetic re-
lationships allows for the predictions of combining
abilities. However, it also introduces correlations
among the joint REML estimates of the additive and
dominance variance components which, in turn, de-
crease the precision of those estimates. As there are
no analytical expressions for the sampling (co)vari-
ance matrix of likelihood based estimators, the joint
variability of REML estimates can be assessed by the
observed information matrix (HARVILLE, 1977). This
method has not been used for estimating the joint
variability of genetic dispersion parameters in plant
breeding. Thus, the goal of this paper is to show
how to calculate the asymptotic covariance matrix of
REML estimates by means of the inverse of the REML
information matrix (HARVILLE, 1977), written in terms
of matrices related to the ‘mixed model equations’
(MME) of HENDERSON (1984), which provide BLUP of
the combining abilities. The expressions presented
here are particularly useful for large data sets, as
they reduce the computational complexity from a
function of the number of records to a function of
the usually smaller number of inbred lines plus the
number of trials or block effects.
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MIXED MODEL TO PREDICT COMBINING
ABILITIES NAD TO ESTIMATE

THE VARIANCE COMPONENTS IN CORN

In the presence of additive and dominance in-
heritance, a vector of records from hybrid geno-
types (i.e. maize) can be explained by means of the
following individual (genotypic) mixed linear model
(HENDERSON, 1984):

y = Xββ + Z1a + Z2d + e [1]

In [1], y is an n×1 vector of records, and b is a
p×1vector of fixed effects (year-experiment-block)
related to y by the incidence matrix X (n × p). The
vector ββ is parameterized such that the rank [X] is
full, i.e. rank [X] = p. Random additive genetic ef-
fects are the general combining abilities in a (q×1)
and the specific combining abilities due to domi-
nance effects in d (q×1), and q is the number of
genotypes. The incidence matrices Z1 (n × q) and
Z2 (n × q) relate y to the elements of a and d, re-
spectively. Finally, the n × 1 vector e contains the
error terms. The joint distribution of all random
variables in [1] is the following:

[2]

where V = Z1 AZ1
‘ σσ2

a + Z2 DZ2
‘ σσ2

ad + I σσ2
e . The ma-

trix A contains the additive relationships among
genotypes (HENDERSON, 1984; BERNARDO, 1994), and
represent the covariance among general combining
abilities (after multiplying by the additive variance
σσ2

a ) in a quantitative genetics setting (COCKERHAM,
1954; KEMPTHORNE, 1954). In the same way, D con-
tains dominance relationships, i.e. probabilities that
both genes in each of two hybrids are identical by
descent. Prediction of genetic values is carried out
by linear combinations of a and d, which are calcu-
lated by means of their corresponding BLUP predic-
tors â and d̂ using the following set of ‘mixed mod-
el equations’ (HENDERSON, 1984; BERNARDO, 1994):

[3]

σσ2
e σσ2

ewith α = –– and δ = –– . It is useful to denote C as
σσ2

a σσ2
ad

the inverse of the coefficient matrix of the MME in [3]:

To estimate the variance components σσ2
a , σσ2

ad

and σσ2
e, we use a modification of the EM (Expecta-

tion-Maximization; DEMPSTER et al., 1977) algorithm,
as implemented by CANTET et al. (1993) to improve
the speed of convergence. The estimating equations
in iteration [p + 1] for the variance components are:

[4]

where Caa is the partition of C associated with the
general combining abilities in  â, and Cdd is the cor-
responding partition associated with the specific
combining abilities in d̂ . Also, 0 < φ < 1 is a scalar
that controls the speed of convergence. In the cur-
rent research φ was taken to be equal to 0.6, as sug-
gested by CANTET et al (1993).

ASYMPTOTIC VARIANCE OF REML ESTIMATES
OF VARIANCE COMPONENTS

The variability of REML estimates is usually not
reported because the sampling distribution of the
vector of variance components can not be written
in closed form (LEHMAN, 1983). This is due to the
REML estimates being obtained by iteration, which
in turn precludes a feasible calculation of the vari-
ances of those estimates. Let θθ be the vector of vari-
ance components in the mixed linear model [1]-[2].
HARVILLE (1977) derived formulae to calculate the in-
formation matrix (I(θθ)) for REML estimates of q. Un-
der asymptotic normality of REML estimates of vari-
ance components, the inverse of I(θθ) is the variance
of θθ (CRESSIE and LAHIRI,1993; JIANG, 1996). The ex-
pression given by HARVILLE (1977) for element i,j of
I(q) is equal to:

[5]

where P = V–1– V–1X (X ‘V–1X)– X ‘V–1. In the model
[1]-[2] the vector θθ is:
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so that I(q) is equal to:

[6]

A less general expression is given by LYNCH and
WALSH (1998, page 791). To calculate [6], the deriva-
tives of V with respect to the variance components
are needed, and these are equal to:

[7]

A problem with calculating [6] is its dependency
on P. To calculate P requires inverting V (of order
n) plus several other matrix multiplications of the
same order. A more feasible algorithm can be ob-
tained by expressing the elements of I(θθ) as func-
tions of matrices related to the MME. In doing so,
advantage is taken of the relationship between
terms such as Zi

’ PZj (i ≠ j, j = 1, 2) and prediction
error variance (HENDERSON, 1984) of â and d̂: Var [â
– a] and Var [d̂ – d].

We now show how to calculate a diagonal ele-
ment of I(θθ) (element 1,1 or I11). The derivation of
an off-diagonal element is described in Appendix A,
whereas Appendix B includes the derivation of
tr(P), which is needed for elements I13 and I23, and
tr(PP) which is a multiple of I33. The proofs of the
derivation of all remaining elements of I(θθ) are
available from request.

Using [5] and [7], I11 is equal to 1/2

tr(PZ1AZ1’PZ1AZ1’). By the use of formula (5.33) in
page 46 of HENDERSON (1984) and a result proven in
Appendix C, the following holds:

Caa σσ2
e = Var [â – a] = σσ2

a A – AZ1’PZ1A (σσ2
a)2 [8]

Algebraic manipulation of [8] produces:

σσ2
a A – Caa σσ2

e = AZ1’PZ1A (σσ2
a)2

so that:

(σσ2
a)2 A–1 (σσ2

a A – Caa σσ2
e ) A–1 Z1’PZ1 [9]

Now, by substituting into tr(PZ1AZ1’PZ1AZ1’)
with [9] the following expression results

[10]
We can now write element I11 as:

and, after expanding the trace operator, we finally
obtain:

[11]

Note that [11] does not require inverting V which
is of order equal to the number of observations. For
the purpose of calculation, the REML estimates of
the variance components replace the true values of
the dispersion parameters.

DATA

Data used in this study were originated from the
national maize program (INTA, National Institute for
Agricultural Technology, Pergamino Experimental
Station, Buenos Aires province), and were collected
from 1988 to 1990. The genetically broad-based
maize populations used to start the program were
BS13, a derivative of the Iowa Stiff Stalk Synthetic
maize population, one maize composite line and
one maize synthetic line from the germplasm collec-
tion of INTA: CII and S34. From 1989 to 1995, indi-
vidual genotypes were propagated through succes-
sive generations by self-pollination (see Table 1),
such as to obtain 32 inbred lines. Finally, each of
these lines was crossed to either SB73, a dent tester
derived from B73, or LP521, or LP611. The last two
testers are flint lines developed by INTA Pergamino.
Thus, the total number of individuals in the pedi-
gree file was 169: 3 testers, 3 original lines, 5 S0
genotypes, 22 S1, 23 S2, 24 S3, 25 S4, 32 S5, and 32
hybrids. Phenotypic data corresponded only to the
hybrids, and they were tested in 1996 and 1997.

The experimental design used was an 8 × 8 lat-
tice with 3 replicates. The trial was repeated in four
locations close to Pergamino, in northwestern
Buenos Aires province. A plot consisted of two
rows, 5.00 m long with 0.70 m between rows. All
plots were over planted by machine and thinned to
a uniform stand density of approximately 62124
plants ha–1 at the five-leaf stage. All yield trials were
machine cultivated and/or hand weeded as neces-
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sary. Plots were hand harvested. The response vari-
able was grain yield (in tn ha–1) analyzed on a 15%
grain moisture basis.

The elements of the A and D matrices were cal-
culated using standard formulae (for example,
LYNCH and WALSH, 1998, page 763), whereas A–1 was
calculated using Henderson‘s simple rules (HENDER-
SON, 1976) and D–1 was obtained by direct inversion
of D.

RESULTS

Variance component estimation
The REML estimates (in (tn/ha)2) were: σσ̂2

e =
0.631; σσ̂2

a = 0.132; σσ̂2
ad = 0.176; the ratio between

dominance and estimated total genetic variance σσ̂2
g

= σσ̂2
a + σσ̂2

ad, was σσ̂2
ad/σσ̂2

g = 0.56. The estimated heritabil-
ity (ĥ2 = σσ̂2

a/(σσ̂
2
a + σσ̂2

ad + σσ̂2
e)) for grain yield was equal

to 0.14. BERNARDO (1994) estimated σσ̂2
ad/σσ̂2

g = 0.12 and
h2 = 0.81 using REML with a similar model to the
one presented here. Later (BERNARDO, 1996), and us-
ing 332 lines belonging to seven heterotic groups,
he obtained the following estimates: σσ̂2

a = 0.512 to
0.193, and σσ̂2

ad = 0.107 to 0.181. The ratio σσ̂2
ad/σσ̂2

g var-
ied from 0.4 to 0.75. Comparison with estimates ob-
tained using other assumptions to the ones used
here (inclusion of A and D), such as those that in-
volve quadratic type estimators (i.e. ANOVA),
should be done with caution. For example, BOCA et
al. (2002) found that estimates of h2 were higher
when using relationships among genotypes, than
when those relationships were ignored. The mean
of 99 estimates of h2 reviewed by HALLAUER and MI-
RANDA (1988) was 0.18.

Asymptotic variances of REML estimators
of variance components

The asymptotic variances of REML estimates of
σσ̂2

a , σσ̂2
ad and σσ̂2

e were calculated using the formulae
obtained in the previous section. The calculated val-
ues were: asymptotic variance of σσ̂2

a = 0.077; asymp-
totic variance of σσ̂2

ad = 0.025, asymptotic variance of
σσ̂2

e = 0.0045, asymptotic covariance (σσ̂2
a, σσ̂

2
ad) = –0.037,

asymptotic covariance (σσ̂2
a, σσ̂2

e) = –0.00055, and the
asymptotic covariance (σσ̂2

ad, σσ̂2
e) = –0.00072. In terms

of correlations (r), the covariances led to r (σσ̂2
a, σσ̂2

ad)
= –0.82, r (σσ̂2

a, σσ̂2
e) = –0.29 and r (σσ̂2

ad, σσ̂2
e) = –0.067.

The magnitude of the correlations for the estimates
of the genetic variance components (σσ2

a and σσ̂2
ad )

with σσ̂2
e are low. However, the high value of r (σσ̂2

ad,
σσ̂2

e ) suggests that the observed data structure does
not allow a precise joint estimation of  σσ̂2

a and σσ̂2
ad.

DISCUSSION

The research discussed here complements the
methodological developments presented by BERNAR-
DO (1994, 1996), by providing formulae for the as-
ymptotic variances of REML estimates of additive
and dominance variance components in terms of
matrices associated with HENDERSON’s (1984) ‘mixed
model equations’. Expressions for the information
matrix such as [6] or the one in page 791 in LYNCH

and WALSH (1998), require the inversion of the vari-
ance-covariance matrix of records V (of order n)
plus several matrix multiplications, in order to cal-
culate P (which is also of order n). The advantage
of our formulation is the removal of the depen-
dence on the number of records to a function of the
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TABLE 1 - Lines, testers and hybrids used during the program.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Initial S0 S1 S2 S3 S4 S5 Trials
lines 1989/90 1990/91 1991/92 1992/93 1993/94 1994/95

Testers
1996/97

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

BS13 BS13
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

CII-35 LP521,

CII CII-47 22 lines 23 lines 24 lines 25 lines 32 lines SB73, 32 hybrids

CII-102 LP611
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

S34
S34-182

S34-228
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––



number of genotypes plus the number of trials or
block effects: p + 2 q, the order of the MME. As a
consequence, the calculation becomes feasible for
large data sets.

As in BERNARDO (1994, 1996), the mixed model
presented here includes additive and dominance
genetic effects, to predict general and specific com-
bining abilities in maize by using additive (by
means of matrix A) and dominance relationships
(by means of matrix D). The difference between the
model of the present research with the one used by
BERNARDO (1994), is in his decomposition of the ad-
ditive effects due to parental origin of the genes. In
addition and in the second paper, BERNARDO (1996)
included check hybrid effects. This differentiation is
needed to take into account linkage disequilibrium
of the parental populations (MELCHINGER, 1988), and
it requires additional additive variances to estimate.
As indicated by a reviewer, plant breeders rarely as-
sume that variances are equal in different reference
populations. In case more additive variances are in-
cluded in the model, the diagonal element in I(θθ)
for the ith additive variance can be seen to be equal
to:

However, to obtain reliable parameter estimates
of different genetic variance components requires
more hybrids than the ones used in the current
study. In this sense, having an estimate of the as-
ymptotic variance of the dispersion parameters al-
lows evaluating whether the REML estimates are
reasonably accurate, as both the variance of the in-
dividual estimates and the covariance between them
are taken into account. Either the models used by
BERNARDO (1994, 1996), or the one employed here,
take into account that genetic effects of related
genotypes are not independent. In breeding pro-
grams of self-pollinated species to obtain pure lines
for crossing, the additive relationships among se-
lected materials at the end of the program are
known. However, if linear models with fixed effects
are employed to calculate combining abilities, addi-
tive and dominance relationships are not taken into
account. As observed by BERNARDO (1994, 1996),
mixed model methodology is a useful and precise
tool to predict combining abilities in maize. By us-
ing REML under properly specified covariance ma-
trices A and D, the method recovers the variance

components in the base population prior to selec-
tion (SORENSEN and KENNEDY, 1984).

The equivalent sampling expressions for the
variance of the REML estimates of the variance com-
ponents do not exist, as the estimating equations
are iterative non-linear functions of the estimators.
The REML estimates are asymptotically normal for
breeding applications involving relationship matri-
ces, as indicated by CRESSIE and LAHIRI (1993, remark
4.1., page 224). In this case, twice the inverse of the
REML information matrix (HARVILLE, 1977) is the as-
ymptotic covariance matrix of the REML estimators
(JIANG, 1996). CRESSIE and LAHIRI (1993) stated that
REML estimators of a variance components model
are asymptotically normal if: 1) the information ma-
trix exists; and 2) the eigenvalues of the matrices re-
lated to each variance component (matrices Z1AZ1‘
and of Z2AZ2‘ in model [1]-[2]) are all positive real
numbers. The first is an existence condition, where-
as the second one is proved for model [1]-[2] in Ap-
pendix D. The information matrix has been previ-
ously used in a tree breeding context by MCCUTCHAN

et al. (1985), to compare the efficiency of different
designs to estimate heritability. However, their ex-
pressions do not allow for relationships among fam-
ilies, i.e. they assumed A = I and D = I. Besides ob-
taining the asymptotic variances of REML estimates,
the analysis produces asymptotic covariances which
discriminate whether the analysis allows for estimat-
ing pairs of dispersion parameters in a precise man-
ner. As an example, the values obtained with the
Argentinean maize data suggest that the estimates of
σσ2

a and of σσ2
d where highly correlated, although

both estimates were not correlated to the estimated
error variance σσ2

e. Therefore, the design was not op-
timal to separate the information for estimating σσ2

a

and σσ2
d simultaneously.

The model discussed in the present research fo-
cused on the covariance between genetic effects.
However, it can include random environmental ef-
fects. For example, fertility trend as discussed by
DURBAN et al. (2001). Let the covariance matrix of
this random fertility effect to be equal to σσ2

s G (as
described in their expression (11)). In a similar
manner as it was derived I11, the diagonal element
of I(θθ) corresponding to σσ2

s can be seen to be equal
to:

where CSS is that portion of the inverse of the coef-
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ficient matrix of the MME associated with the ran-
dom fertility effect. By a similar reasoning, genotype
by environment interactions can be included in the
model. PIEPHO et al. (2003) observed that “ANOVA-
type mixed models cannot always satisfactorily
model interactions”, and then reviewed several pro-
posed mixed models with individual genetic effects
as in the framework of the current research. For ex-
ample, FRENSHAM et al. (1998) considered the follow-
ing model:

y = X ββ + Z u + ξξ + e

The vectors y, ββ and e and the matrices X and Z
are as in [1], while u are random genotypic effects
and ξξ are random G × E effects. The specification is
completed with E(ξξ) = 0 and Var(ξξ) = ΩΩ. Using [5]
the element of I(θθ) for the dispersion parameter ΩΩij
is equal to

Depending on the structure of ΩΩ, the above for-
mula can be expressed in terms of the inverse of
the coefficient matrix of the mixed model equa-
tions, in a similar fashion as it was done for model
[1]-[2].

APPENDIX A

Expressions for elements of I(θθ) in terms
of matrices which are functions of the MME

Consider I12 = 1/2 tr(PZ1AZ1’PZ2DZ2’) and the
following equalities for prediction error variance of
dominance effects:

[A.1]

Expression [A.1] allows us to write

so that

[A.2]

To obtain an expression for I12 in terms of Caa

and Cdd, replace with [9] and [A.2] in [A.1]:

which, after taking traces results in:

or

APPENDIX B

Expressions for the traces of P and PP
in terms of matrices related to the MME

SEARLE (1979) expressed P as

[B.1]

where:

[B.2]

After taking traces [B.1] results in:

[B.3]

Using [B.2] in [B.3] and as tr(In) = n and
tr[X(X’X)–1X’] = rank [X] = p, we have:

Using [B.1], tr(PP) is equal to:

[C.1]
[C.1] can be expressed as:

The second terms in [C.2 ]: can be expressed as:
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but

Then [C.3] is equal to

The last term in [C.2 ] can be expressed as:

Replacing with the equality [C.4], and using [C.6]
in the term [C.5] and after some algebra, we have:

The final expression for tr(PP) is equal to:

APPENDIX C

Derivation of Var [â – a]
Using expression (5.18e) in HENDERSON (1984,

page 43) prediction error variance of â is Var [â – a]
= Var (a) – Var â (also â = cov (a, y’) [Var (y)]–1 (y
– Xββ̂) (SEARLE et al., 1993, equation (45) in page

273). Now, Var(a) = A σσ2
a and the BLUP of a is

equal to

Therefore

As PVP = P (SEARLE et al., 1993, page 274), we
have that Var (â ) = AZ1

‘ V–1 PV PV–1 Z1 A (σσ2
a)2.

Finally, to obtain (8) replace with the last ex-
pression into Var [â – a]:

APPENDIX D

Eigenvalues of Z1AZ1’
The second condition for the REML estimators of

the variance components to be asymptotically nor-
mal in theorem 4.1 of CRESSIE and LAHIRI (1993), is
that the smallest eigenvalues of Z1AZ1’ and Z2DZ2’
are greater than 0, i.e. positive. We now show that
all eigenvalues of Z1AZ1’ are positive. Similar results
can be obtained for Z2DZ2’.

Consider first the n × q matrix Z1 and the square
positive definite matrix A of order q. Without loss of
generality we can reorder the genotypes in a such
as (q - t) genotypes without phenotypic records
precede those of the t genotypes with records (in
our case, the hybrids). Then, Z1 = [0 D], with matrix
0 having its n × (q - t) elements equal to 0. Matrix
D is diagonal of order t and all diagonal elements
equal to ni (number of observations for the ith-
genotype, i = 1, …, t). A similar partition can be
practiced in A so that

where subindexes N and O stand for ‘non-observed
phenotype’ and ‘observed phenotype’, respectively.
Pre and postmultiplying A by Z1 and its transpose
respectively, produces:

[1]

Matrix D has an inverse as its diagonal elements
are ni ≥ 1. Also, Var(aO) = AOO σσ2

a is the covariance
matrix of the general combining abilities of the lines
with phenotype recorded, AOO is positive definite.
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Therefore, by theorem A.9 (page 185) in TOUTEN-
BURG (1982), DAOOD is positive definite and its
eigenvalues are all positive.
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