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Abstract

Genetic evaluation using multibreed covariance theory requires estimating the segregation variance. The segregation
variance is the amount by which the additive variance in the F2 exceeds that in F1. The goal of this research was to obtain
REML estimates of the additive variances plus segregation variance, assuming equal environmental variances for all genetic
groups. The data were originated in two experimental herds of beef cattle from New Zealand (NZ) and Argentina (AR).
Records were birth weights of 4082 Angus–Hereford (NZ) and 6963 Nellore–Hereford (AR) cross calves, including
purebreds, F1, backcrosses, F2, and advanced generations (F3, F4, F5). Variance components were estimated using an
additive animal model by REML, with a first-derivative algorithm. The asymptotic standard errors of the REML estimates

2were calculated using the inverse of the information matrix. After 400 iterations, estimates of the additive variances (in kg )
were 7.7760.91 (Angus) and 10.0261.11 (Hereford), and estimate of the segregation variance was 1.1460.85, in NZ data.
Whereas in AR data, estimates of the additive variances were 6.5960.71 (Nellore) and 8.9760.75 (Hereford), and estimate
of the segregation variance was 1.4860.74. The error variances were estimated to be 7.9260.06 in NZ and 6.8660.06 in
AR. Asymptotic tests (Likelihood Ratio and Lagrange Multiplier) of the hypothesis of null segregation variance suggested
that this was not the case in these data.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Composite population; Segregation variance; REML; Beef cattle

1. Introduction sary follow up of current evaluation procedures.
Genetic evaluation by Best Linear Unbiased Predic-

Developing genetic evaluation procedures for tion (Henderson, 1984) requires computing the vari-
breed crosses and composite populations is a neces- ance-covariance matrix for genetic merit. Lo et al.

(1993) developed the theory of the covariance
between relatives when two or more breeds are*Corresponding author. Tel.:154-11-4524-8000x8192/8184;
combined to form a composite population, using anfax: 154-11-4514-8735.

E-mail address: birchmei@mail.agro.uba.ar (A.N. Birchmeier). additive model. The parameterization includes the
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additive variance for each purebreed and an extra relative performances of advanced generations of
component for each type of F1 crosses. This com- rotation crosses and inter se matings with Angus and
ponent is called segregation variance and is due to Hereford cattle. Previous analyses of the same data,
the difference in allelic frequencies between the two as well as the description of the mating design and
breeds. It is equal to the difference in additive the herd management were given by Morris et al.
variances between the F2 and F1 breed groups (1994). Data used for the present analysis were 4082
(Lande, 1981). The presence of segregation variance birth weights from 27 different genotypes or breed
in the additive covariance matrix of composite types, including advanced generations such as F2,
populations is the main difference between the F3, F4 and F5. Records for the present study were
parameterization of Lo et al. (1993) and the one collected between 1973 and 1990. Parents without
given by Elzo (1990). To obtain accurate estimates records were added to the pedigree file so that the
of segregation variance, records of F2 animals or total number of animals for the analysis was 4939.
advanced generations of inter se matings (F3, F4, F5
and so on) are needed. Backcross data are half as2.2. Argentinian (AR) data
informative as F2 records.

Cantet and Fernando (1995) implemented the Data were recorded from a rotational cross experi-
theory of Lo et al. (1993) to predict breeding values ment at Leales Experimental Station, near San
of crosses originated in two breeds. They discussed ´ ´Miguel de Tucuman, province of Tucuman, in
the consequences of not accounting for segregationnorthern Argentina. The climate is subtropical with a
variance while calculating prediction error variance rainy summer and a dry winter and spring. The birth
of breeding value. There are no estimates of segrega-weights of 6963 animals from 17 cross types of a
tion variance using the animal model of Cantet and rotational cross experiment between Hereford and
Fernando (1995). The objective of this research was Nelore cattle, were collected from 1960 to 1993. The
to estimate additive variances and segregation vari- genotypes were both purebreds, F1, F2, F3, first and
ance in two experimental composite herds of second backcrosses and different rotation crosses.
Angus3Hereford and Nellore3Hereford cattle, All cattle were kept in pastures without any supple-
using Restricted Maximum Likelihood (REML, Pat- mental feeding. Except for a few years in which
terson and Thompson, 1971). The trait under study artificial insemination was used, all matings were
was birth weight. natural single-sire matings. In all years purebred

matings to Hereford and Nelore allowed disentangl-
ing effects of genotype and year. Heifers were first

2. Materials and methods bred to calve as 3 year olds. Calves were born
mostly during spring. A total of 7357 animals were

Birth weights from two experimental beef herds included in the pedigree file, including 90 bulls and
were used in this research. The first data set was 1725 cows.
developed by personnel of AgResearch, Ruakura
Agriculture Centre, Hamilton New Zealand. The 2.3. Model of analysis
second data set was from a herd belonging to the
National Institute of Agricultural Technology Each data set was analyzed separately with the

´(INTA) at Leales Experimental Station, Tucuman, following single-trait additive animal model (Cantet
Argentina. and Fernando, 1995):

2.1. New Zealand (NZ) data y 5X b 1X b 1Za 1 e [1]1 1 2 2

A heterosis retention experiment was carried out wherey, b , b , a, ande are the vectors of records,1 2

on a property of Landcorp Farming, Goudies Station, fixed environmental effects, mean genetic parame-
60 km southeast of Rotorua, a typical temperate ters, random breeding values (BV) and errors, re-
region. The experiment was designed to measure thespectively. The incidence matricesX , X and Z1 2
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relate records to fixed effects, genetic parameters and 1
]BV, respectively. For data set NZ, the effects in- G 5 cov (a , a )1 cov (a , a )f gij i k i l2

cluded inb were sex of calf, age of dam (2, 3, 4,1

wherea is the BV of i andk andl are the parents of.4), year of birth (1,..,18), and date of birth i

animalj. Lo et al. (1993) further observed thatG can(covariate), as in Morris et al. (1994). Corresponding
be inverted asA in the animal model for one breedeffects for the AR data were sex of calf, age of dam

21(Henderson, 1984), so that by inverting backG in(3, 4, 5–8,.8), and contemporary groups (1,.., 49).
expression (36) of Lo et al. (1993),G is equal to:Following Hill (1982), two mean genetic parameters

were included inb for both data sets: additive2 21 2 2 2G 5 (I 2P ) (D s 1D s 1D s )effects (A) and dominance effects (D). Let p and Q 1 A1 2 A2 S ASFi

21p be the breed composition of the sire and of theMi 93 (I 2P )Qdam of individual i, wherep ( p ) is equal to 1 ifFi Mi

the father (mother) of i is a purebred Angus or equal P being the matrix that relates BV of progeny toQ

to 0 if a purebred Hereford, in the NZ data. For the BV of parents (Quaas, 1988). The diagonal matrices
2AR data,p 50 for Hereford orp 51 for Nellore. D , D and D contain the fractions of eithers ,Fi Fi 1 2 S A1

2 2Then, coefficients ofA and D for animal i were s or s , that are present in the MendelianA2 AS

calculated using the following algebraic modification sampling residuals of each individual, so thatG 5e
2 2 2of the formulae given by Lynch and Walsh (1998, p. D s 1D s 1D s is the diagonal variance1 A1 2 A2 S AS

207): matrix of Mendelian residuals. The vector of errors
2is assumed to be distributede |MVN( 0, Is ) ande

A 5 p 1 p 21i Fi Mi independent ofa, meaning that all genetic groups
have the same environmental variance. Finally, theD 5 2[p (12 p )1 p (12 p )] 21i Fi Mi Mi Fi
distribution of the data vectory is MVN(Xb, V ) with

2V5ZGZ91 IsTo complete the specification of the fixed effects, we e

9 9parameterizeb95[b b ] so that X5[X uX ] be a1 2 1 2

2.4. REML estimation of the variance componentsfull rank matrix.
The vectora was assumed to follow the multi-

2 2 2 2Let u95[s s s s ] the vector of dispersionvariate Normal density with mean0 and covariance A1 A2 AS e

parameters to be estimated. The REML estimators ofmatrix G. Diagonal element ofG for animal i was
Q were obtained by maximizing the logarithm of thecalculated following Lo et al. (1993) and Cantet and
restricted likelihood (L) in model [1]. After SearleFernando (1995), as:
(1979, p. 91), the first derivatives with respect to the

2 2 scalar variance components inu are equal to:G 5 f s 1 f s 11/2 cov (a , a )ii i1 A1 i2 A2 S D

2 ≠L ≠V ≠V1 2( f f 1 f f )sS1 S2 D1 D2 AS ] ] ]5 tr P 1 y9P PyS D≠u ≠u≠u i ii

where f is the expected fraction of genes in in-ij 21 21 21 21 21where P 5V 2V X(X9V X) X9V . It isdividual i that originates in parental breedj. The
2 shown in Appendix A that the expression for the firstparameters is the additive variance of Angus inA1

2 derivative with respect to any of the additive vari-NZ, or Nellore in data set AR, whereass repre-A2
ances (u with i51, 2, 3), is as follows:isents the additive variance of the Hereford breed in

2both data sets. The segregation variances ≠LAS 21 aa] ˆ ˆ5 tr (D G )2 tr (C H )2 a 9H a(Wright, 1968; Lande, 1981; Lo et al., 1993; Cantet i ´ i i≠ui
and Fernando, 1995) is due to differences in gene

aafrequencies between the two parental breeds. Oncewhere C is the partition of the inverse of the
diagonal elements ofG are calculated, Lo et al. coefficient matrix of the mixed model equations

ˆ(1993) suggested calculating off-diagonal elements (MME) corresponding toa, a is BLUP(a), and
by means of the following formula: matrix H is equal to:i
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21 21 21ˆ9H 5 (I 2P )G D G (I 2P ) information matrix (Jiang, 1996): Var (u )5[I(u )] .i Q ´ i ´ Q

The information matrix is minus the expectation of
the second derivatives of the restricted likelihood,The expression for the first derivative with respect

2 with elementi, j being equal to (Harville, 1977):to the error variances is derived in Appendix A,e

and it is as follows
1 ≠V ≠V

aa 21 ] ] ]I (u )5 tr P Pˆ ˆ≠L n 2 r[X] 2 q 1 tr (C G ) e 9e S Dij 2 ≠u ≠ui j]] ]]]]]]]] ]]5 22 2 2 2
≠s s (s )e e e

In order to calculate the information matrix, its
wheren is the number of animals with birth weight

elements were expressed in terms of matrices previ-
recorded (4082 for NZ and 6963 for AR),r[X] is the

ously defined, as follows:
rank of X (24 for NZ, and 54 for AR),q is the
number of animals in the pedigree file (4939 for NZ 21 21I (u )5 tr  D G D G ij i ´ j ´ˆˆ ˆand 7357 for AR) ande 5 y 2Xb2Za.

21 21 21 aaThe formulae for the REML estimates of the 92 2 tr  (I 2P )G D G D G (I 2P )C Q ´ i ´ j ´ Q
variance components are obtained by setting (A.5)

21 21 aa9 91 tr  (I 2P )G D G (I 2P )C (I 2P )Q ´ i ´ Q Qand (A.9) to zero and solving for them. The REML
21 21 aaestimate in iteration [r 1 1] for any additive variance 3G D G (I 2P )C  i, j 5 1,2,3´ j ´ Qcomponent (i51, 2, 3) is equal to:

2[r11] 21 21s 5 9I (u )5 tr  (I 2P )G D G (I 2P )Ai i4 Q ´ i ´ Q

[r11]9 [r ] [ r11] aa [r11] [r] 2 2 21 21 [r ] aa aa 21 aaˆ ˆa H a 1 tr (C H )2 tr [(D s 1D s )G D G ]i i j A k A ´ i ´j k 3 (C 2C G C ) i 5 1,2,3
]]]]]]]]]]]]]]

21 21 [r ]tr (D G D G )i ´ i ´

aa 21 aa 21I (u )5 n 2 r(X)2 q 1 tr  C G C G and for the error term is: 4 4

[r11]ˆ ˆ[e 9e ]2[r11] 2]]]]]]]]]]s 5 2.6. Tests of the hypothesis H : s 50 vs.e aa [r11] 21 [r ] o AS
2n 2 r [X] 2 q 1 tr (C G ) H : s .0a AS

These expressions were computed by a program
Asymptotic tests were employed as the samplingwritten in FORTRAN and the use of sparse matrix

aa distributions of statistics which are functions of thetechniques. Traces involvingC were calculated
2REML estimate ofs are unknown. The two testsusing the factorization of Takahashi (Duff et al., AS

used are based on the restricted likelihood, rather1992, pp. 273–275). Elements in the diagonals of the
than in the full likelihood. The first one was theD-matrices were calculated by an extension of the
Likelihood Ratio (LR). Discussion of the distributionalgorithm of Quaas (1976) for calculating diagonals
and properties of this statistic can be found inof the additive relationship matrix.
Verbeke and Molenberghs (1997). Letu be theThe fraction of total additive variance that is

2vector of dispersion parameters includings , andpresent in different genotypes (see Table 1, p. 427 in AS
2 let u be the respective vector without segregationLo et al., 1993) was expressed as ah value. The 2

2 variance. Then, the statistics LR52[L(u )2L(u )]difference inh for the F2 with respect to the F1 is 2
2 22 asymptotically follows a mixture of 0.5 (x 1x ),due to s , and is a measure of the relative 0 1AS

underH (Self and Liang, 1996). The values of themagnitude of the parameter. o

two log-likelihoods were calculated as in Harville
(1977):2.5. Asymptotic covariance matrix of REML

estimates
1
]L(u )5 2 [ln (det (R))2 ln (det (C))2The asymptotic variance matrix of the REML

21 ˆ ˆ2 y9R (y 2Xb2Zu )]estimates was calculated as the inverse of the
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C being the inverse of the coefficient matrix of the (P.0.05), but was highly significant (P50.000002)
MME. in AR. None of the estimates ofD were significantly

The Lagrange Multiplier test (LM), as im- different (P.0.05) from zero. These results do not
plemented by Rahman and King (1997) was also support the hypothesis of the presence of dominance
used. Lets be the score (i.e. the first derivative of the effects for birth weight in both data sets.
REML likelihood function with respect to the segre-
gation variance), and letI(u ) be the information

3.2. Estimates of the variance componentsmatrix, being both statistics evaluated underH .o
33 1 / 2Then, the LM statistics LM5s /(I ) follows a

The REML estimates of variance components instandard normal density underH (Rahman ando
33 both populations, with their asymptotic standardKing, 1997). The scalarI is the diagonal element

2 errors, under the models of Elzo (1990) and ofin the inverse ofI(u ) corresponding tos .AS
Cantet and Fernando (1995), are shown in Table 2.

2Convergence was attained whens changed to theAS

fourth decimal place, which happened at about3. Results
iteration 400 in both data sets. The estimated addi-

2ˆtive variance of the Hereford breeds (s ) was 29%3.1. Genetic fixed effects A2
2ˆlarger than that of the Angus breed (s in NZ), andA1

2ˆ36% larger than that of the Nellore breed (s inBesides A and D, the parameterization of Hill A1
2ˆ(1982) for two breeds includes the epistatic com- AR). The estimates of segregation variance (s )AS

2 2ponentsA 3A, A 3D andD 3D. An attempt to fit were equal to 1.14 kg in NZ, and 1.48 kg in AR.
2all five parameters inb ended with estimates of the Estimates ofh for birth weight are presented in2

2epistatic components almost perfectly correlated toA Table 3. Similar estimates ofh were found in both
and D, for both data sets. Therefore, as multicol- populations. Estimated segregation variance repre-
linearity precluded the individual estimation of all sented 11.4 and 16% of the total additive variance in
five parameters, onlyA and D were included inb , F2 animals for the NZ and AR data sets, respective-2

and these estimates are shown in Table 1. ly. The F2 is used as the reference population in Hill
The estimate ofA in NZ was not significant (1982) and Lo et al. (1993).

Table 1
Estimates of mean additive (A) and dominance (D) effects (kg)

Data base A D

NZ 20.58260.179,P50.132 20.69960.205,P50.113
AR 2.21660.222,P,0.001 0.20260.220,P50.631

Table 2
2Estimates of the variance components (in kg )

2 2 2 2Model s s s sA1 A2 AS e

Data base NZ
Cantet and Fernando (1995) 7.7760.91 10.0261.11 1.1460.85 7.9260.06
Elzo (1990) 7.8560.91 10.3961.13 – 8.1260.06

Data base AR
Cantet and Fernando (1995) 6.5960.71 8.9760.75 1.4860.74 6.8660.06
Elzo (1990) 7.2360.72 9.2260.75 – 6.9960.05

2 2 2 2
s , additive variance of Angus for NZ or Nellore for AR;s , additive variance for Hereford;s , segregation variance;s , errorA1 A2 AS e

variance.
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Table 3 Table 4
Heritabilities of different genotypes Asymptotic covariances among REML estimates of the variance

components (expressed as correlations)Genotype Cantet and Fernando (1995) Elzo (1990)
2 2 2 2ˆ ˆ ˆ ˆNZ s s s sA1 A2 AS eNZ Data base

ARAngus 0.495 0.492
2Hereford 0.559 0.561 ŝ 1 0.09 20.09 20.54A1
2F1 0.529 0.529 ŝ 0.17 1 20.23 20.45A2
2F2 0.559 0.529 ŝ 20.29 20.27 1 20.28AS
2

ŝ 20.54 20.52 20.18 1eAR Data base
Nellore 0.49 0.508
Hereford 0.567 0.569

that the coefficients of variation of REML estimatesF1 0.531 0.541
2

F2 0.574 0.541 of s in Table 2 are of sizeable value (75% for NZAS

and 50% for AR), which may explain the different
significance levels attained by both tests.

3.3. Asymptotic (co)variances among REML Overall, the results support the existence of segre-
estimates of the variance components gation variance for birth weight in beef cattle. Using

a two-trait sire-maternal grandsire model, Elzo and
The asymptotic covariances among REML esti- Wakeman (1998) obtained an estimate of segregation

mates of the variance components (expressed as variance (‘interbreed additive variance’) for birth
2correlations), are shown in Table 4. Correlations weight of 0.21 kg , in an Angus–Brahman compo-

2 2ˆ ˆvaried between 0.17, forr(s , s ) in AR, to site population. This estimate is smaller than the twoA1 A2
2 2ˆ ˆ20.54 for r(s , s ) in both data sets. The correla- estimates of segregation variance obtained in theA1 e

2 2ˆ ˆtions with the greatest values werer(s , s ) and present research. Segregation variance is related toA1 e
2 2 2 2ˆ ˆ ˆ ˆ the size of the difference in gene frequencies be-r(s , s ). In the NZ data,r(s , s ) had a largerA2 e AS A2

2 2 tween the two parental breeds (Lande, 1981; Lo etˆ ˆmagnitude (20.23) than r(s , s ) (20. 09).AS A1
22 2 2 al., 1993). In the present study,s accounted forˆ ˆ ˆWhereas in the AR data,r(s , s ) and r(s , ASAS A2 AS

2 11.4 and 16.0% of the total additive variance in theŝ ) were similar:20.27 and20.29, respectively.A1
F2 animals, for the NZ and AR data, respectively.
Whether these differences may be due to selection or23.4. Test of the hypothesis H : s 50o AS drift, or a combination of both (Falconer and Mac-
kay, 1996), is difficult to ascertain. The number of

The P values of the LR test were smaller than records of animals that provides most of the in-
0.00001 for both NZ and AR, whereas theP values 2formation for estimatings (F2, F3, F4, F5), inASof the LM test were 0.093 and 0.063, for NZ and other non-maternally affected traits of data sets NZ
AR, respectively. and AR, precluded estimating the parameter with a

reasonable level of precision. Alternatively, a model
considering heterogeneous additive variance for a
maternally influenced trait requires nine parameters4. Discussion
to estimate (Cantet and Fernando, 1995), which in

2 2 turn requires informative records on the dams fromThe REML estimates ofs were 1.14 kg forAS
2 advanced generations, such as F2, F3, F4, and thisNZ and 1.48 kg for AR. For both populations the

makes it difficult to obtain accurate estimates of allLR statistics strongly supported the rejection of the
2 parameters. Extension of the theory presented here tohypothesis thats was null. However, the LMAS

accommodate dominance effects was accomplishedstatistics did not reach a significance level of 0.05,
by Lo et al. (1995), but the number of parametersalthough theP values were,0.10. A major differ-
needed to fit a model with two breeds (25) poses aence between the LR and the LM test is that the
difficult problem of estimation, so that except forlatter statistic involves the asymptotic variance of
simple terminal schemes (Lo et al., 1997), wideREML estimates, whereas the former does not. Note
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application of the additive plus dominance model in 5. Conclusion
most experimental or field data sets is unlikely. The
model used for the estimation of additive variances The REML estimates of segregation variance for
included the assumption of equal environmental birth weight, explained 11.4–16.0% of total additive
variance among the purebreds and all crosses (F1, variance in F2 animals from two composite popula-
F2, F3, F4, F5, and all backcrosses). To test this tions of beef cattle. Asymptotic tests suggested that
assumption, estimates from a sire model with differ- segregation variance was not null in these data.
ent environmental variances for 1) the purebreds, the
F1, and all other genetic groups, using PROC Acknowledgements
MIXED of SAS, were obtained. The results showed
quite similar estimates of the environmental vari- This research was supported by grants of Sec-
ances in both data sets, specially for those associated ´retaria de Ciencia y Tecnica, UBA (UBACyT G035
with the purebreds and the F1 generation, which are -2001-2002) and Consejo Nacional de Inves-
non informative genotypes for segregation variance. ´ ´tigaciones Cientıficas y Tecnicas (PIP 0934-98) of
This evidences the fact that all cows were managed Argentina.
in one herd for both data sets. Also, purebred and F1
animals were kept as controls during most years of Appendix A
the data collection.

Implementation of the standard version of the EM First derivatives of the logarithm of the restricted
algorithm of Dempster et al. (1977) to estimate the likelihood function with respect to the additive

2variance components by REML (Searle et al., 1992, variances s (i51,2,3)A i
p. 302–303), in the model of Cantet and Fernando

2 2 2 Using Searle (1979, p. 91), the first derivative of(1995), is not possible ass , s , ands cannotA1 A2 AS
the logarithm of the REML likelihood with respect tobe factored from the sufficient statistics (see expres-
any additive variance is equal to:sion (A.4) in Appendix A). Therefore, REML was

implemented as suggested by Foulley (1993), and ≠L 1 ≠V 1 ≠V
]] ] ]] ] ]]5 2 tr P 1 y9P Py (A.1)later used by Foulley and Quaas (1995) to estimate 2 2 2S D2 2≠s ≠s ≠sAi Ai Aidispersion parameters in a mixed model with

heterogeneous variance components. The first term on the right of (A.1) is:
We failed to obtain reliable estimates of the mean

≠V ≠G
genetic parameters (A, D, A3A, A3D and D3D) ]] ]]tr P 5 tr Z Z9P2 2S D S D

≠s ≠sAi Aiin the two-breed model of Hill (1982), due to almost
21 21perfect (close to 1 or21) correlations among most 5 tr [(Z9PZ)(I 2P ) D (I 2P ) ] (A.2)Q i Q

of the estimates. A similar situation occurred when
21 21 aa 21On using the equalityZ9PZ5G 2G C G inthe parameterization of Dickerson (1969,1973) was

(A.2), the trace is equal to:used (data not reported). This may indicate that
estimates of mean genetic parameters to differentiate 21 21 aa 21 21 219tr [(G 2G C G )(I 2P ) D (I 2P ) ]Q i Qbetween additive and dominance, on one side, and

21 21 219 95 tr [(I 2P )G (I 2P )(I 2P ) D (I 2P ) ]epistatic effects, on the other side, may be difficult to Q ´ Q Q i Q
21 aa 21 21 21obtain in most field data sets used for genetic 92 tr [(G C G )(I 2P ) D (I 2P ) ]Q i Q

evaluation purposes. Regardless of the mechanism of 21 aa 2195 tr (D G )2 tr [C (I 2P )G (I 2P )i ´ Q ´ Qgenetic determination that affects differences in
21 21 219(I 2P ) D (I 2P ) G ]mean cross value (additive, dominance, additive3 Q i Q
21 aa 21 21additive, etc.), a feasible solution is to fit the genetic 9 95 tr (D G )2 tr [C (I 2P )G D (I 2P )i ´ Q ´ i Q

21means using the parameterizations of Dickerson 9(I 2P )G (I 2P )]Q ´ Q(1969, 1973) or Hill (1982), and write down an
21 aa 21 2195 tr (D G )2 tr [C (I 2P )G D G (I 2P )]i ´ Q ´ i ´ Qadditive variance-covariance matrix for the breeding

values. (A.3)
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aa 21The second term on the right of (A.1) is as: n 2 r(X) q 2 tr [C G ]
]]] ]]]]]5 2 (A.7)2 2≠G s se e]]y9PZ Z9P9y2

≠s Ai Now, the second term on the right of (A.6) is:
21 2195 (y9PZ)(I 2P ) D (I 2P ) (Z9Py)Q i Q ˆ ˆe 9e

]]y9PPy 5 (A.8)21 21 21 21 2 2ˆ ˆ95 a 9G [(I 2P ) D (I 2P ) ]G a (s )Q i Q e

21 21ˆ ˆ95 a 9[(I 2P )G D G (I 2P )]a (A.4) as:Q ´ i ´ Q

ê21To simplify notation, letH be equal to: ˆi ˆ ˆ ˆ ]Py 5 Sy 2SZu 5 S(y 2Xb2Zu )5R e 5 2
s e21 219H 5 [(I 2P )G D G (I 2P )]i Q ´ i ´ Q

After replacing with (A.7) and (A.8) in (A.6), we
Then, the derivative of the REML likelihood is obtain:
obtained by replacing with (A.3) and (A.4) in (A.1) aa 21 ˆ ˆ≠L n 2 r(X) 2 q 1 tr [C G ] e 9eand usingH , as follows: ]] ]]]]]]]] ]]i 5 2 12 2 2 2

≠s 2s 2(s )e e e
≠L 21 aa]] ˆ ˆ5 tr (D G )2 tr [C H ] 2 a 9H a (A.5) (A.9)2 i ´ i i
≠s Ai

The next step is to set (A.5) and (A.9) to 0. For the
First derivatives of the logarithm of the restricted additive variances we have that
likelihood function with respect to the error

21 aa
2 ˆ ˆtr (D G )5 tr (C H )1 a 9H a (A.10)i ´ i ivariance s e

The first term on the right of (A.10) is equal to:Proceeding as in the previous section, the first
21derivative of the REML likelihood is: tr (D G )i ´

21 21≠L 1 ≠V 1 ≠V 5 tr(G D G G )´ i ´ ´]] ] ]] ] ]]5 2 tr P 1 y9P Py2 2 2S D2 2 21 21 2 2 2≠s ≠s ≠se e e 5 tr [(G D G )(D s 1D s 1D s )]´ i ´ i Ai j Aj k Ak
2 2

≠(Is ) ≠(Is ) 21 21 21 1e e 5 tr (G D G D s )] ]] ] ]] ´ i ´ i Ai5 2 tr P 1 y9P PyS D2 22 2≠s ≠s 21 21 2 2e e
1 tr [(G D G )(D s 1D s )]´ i ´ j Aj k Ak

1 1
2 21 21] ]5 2 tr (P)1 y9PPy (A.6) 5s tr (G D G D )Ai ´ i ´ i2 2

21 21 2 2
1 tr [(G D G )(D s 1D s )] (A.11)´ i ´ j Aj k AkLet the matrixS be equal to:

To obtain the REML estimating equations in itera-21 21 21 21 21S 5R 2R X(X9R X) X9R 2tion [r], the additive variance componentss A (i5i
1 1, 2, 3) are factored out from (A.11), so that the21]5 (I 2X(X9X) X9)2 resulting expressions are equal to:s e

[r11] aa [r11] 2 2 21 21 [r11]ˆ ˆa 9H a 1 tr (C H ) 2 tr [(D s 1D s G D G ]i i j Aj k Ak ´ i ´Then, on using expression (A.3) in Johnson and 2[r ] ]]]]]]]]]]]]]s 5Ai 21 21 [r11]tr (D G D G )Thompson (1994), the trace in the first term on the i ´ i ´

right of (A.6) can be written as: (A.12)

21 21
2tr (P)5 tr (S)2 tr [(Z9SZ 1G ) Z9SSZ] Factoring outs from (A.9), produces the follow-e

2 21 21 ing estimating equation for the error component:5 tr (S)2 1/s tr [(Z9SZ 1G )e

21 21 [r11]((Z9SZ 1G )2G )] ˆ ˆe 9e2[r ] ]]]]]]]]]s 5 (A.13)e aa 21 [r11]2 21 21 21 n 2 r(X)2 q 1 tr (C G )5 tr (S)2 1/s tr [I 2 (Z9SZ 1G ) G ]e q
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