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ABSTRACT: Method 0O and Restricted Maximum
Likelihood (REML) were compared for estimating heri-
tability (h?) and subsequent prediction of breeding val-
ues (a) with data subject to selection. A single-trait
animal model was used to generate the data and to
predict breeding values. The data originated from 10
sires and 100 dams and simulation progressed for 10
overlapping generations. In simulating the data, ge-
netic evaluation used the underlying parameter values
and sires and dams were chosen by truncation selection
for greatest predicted breeding values. Four alternative
pedigree structures were evaluated: complete pedigree
information, 50% of phenotypes with sire identities
missing, 50% of phenotypes with dam identities miss-
ing, and 50% of phenotypes with sire and dams identi-
ties missing. Under selection and with complete pedi-
gree data, Method O was a slightly less consistent esti-
mator of h? than REML. Estimates of h? by both
methods were biased downward when there was selec-
tion and loss of pedigree information and were unbiased
when no selection was practiced. The empirical mean
square error (EMSE) of Method [0 was several times
larger than the EMSE of REML. In a subsequent analy-
sis, different combinations of generations selected and

generations sampled were simulated in an effort to dis-
entangle the effects of both factors on Method O esti-
mates of h%. It was observed that Method 0 overesti-
mated h? when both the sampling that is intrinsic in
the method and the selection occurred in generations
6 to 10. In a final experiment, BLUP(a) were predicted
with h? estimated by either Method [ or REML. Subse-
quently, five more generations of selection were prac-
ticed, and the mean square error of prediction (MSEP)
of BLUP(a) was calculated with estimated h? by either
method, or the true value of the parameter. The MSEP
of empirical BLUP(a) using Method [0 was greater than
the MSEP of empirical BLUP(a) using REML. The lat-
ter statistic was closer to prediction error variance of
BLUP(a) than the MSEP of empirical BLUP(a) using
Method [, indicating that empirical BLUP(a) calcu-
lated using REML produced accurate predictions of
breeding values under selection. In conclusion, the vari-
ability of h? estimates calculated with Method 0 was
greater than the variability of h? estimates calculated
with REML, with or without selection. Also, the MSEP
of EBLUP(a) calculated using estimates of h? by Method
O was larger than MSEP of EBLUP(a) calculated with
REML estimates of hZ.
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Introduction

Dispersion parameters of animal populations are
rarely known. Thus, BLUP of breeding values (@) have
been calculated using estimates of these parameters in
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the mixed model equations (MME; Henderson, 1984).
This two-stage method of calculating BLUP has been
referred to by statisticians as “empirical BLUP”
(EBLUP; Robinson, 1991), to differentiate it from
“true” BLUP where the variance components are
known. Harville (1985) indicated that, although
EBLUP may be unbiased, its mean square error of pre-
diction (MSEP[EBLUP)) is larger than the MSEP of
BLUP.

Selection affects statistical properties of estimates of
dispersion parameters (Gianola and Fernando, 1986;
Im et al., 1989), notably bias and mean square error
(Rothschild et al., 1979; Ouweltjes et al., 1988; Cantet,
1990). If the distribution of dispersion parameters is
affected by selection, MSEP[EBLUP(a)] would also be
affected. Use of less accurate estimates of the dispersion
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parameters may also affect accuracy of predicted breed-
ing values in selected populations more than in random
mating populations. Recently, Method [ (Reverter et
al., 1994a,b) has been proposed as an alternative to
REML for estimating the dispersion parameters, be-
cause Method 0O is more feasible to calculate than
REML. Derivation of Method O does not invoke any
general principle for obtaining an estimator, such as
minimizing mean square error or maximizing a likeli-
hood (Lehman, 1983). Properties of Method [0 under
selection are unknown, so objectives of this research
were 1) to compare performance of Method O with re-
spect to REML under no selection (random choice of
replacements) and selection on EBLUP(a), in relation
to empirical expectation and mean square error, 2) to
disentangle the effects of moment of selection and mo-
ment of sampling on the empirical expectation of
Method O estimates of h%, and 3) to compare the magni-
tude of MSEP[EBLUP(a)] calculated with either REML
or Method [J.

Materials and Methods

Stochastic simulation was used to predict breeding
values with data from selected populations and un-
known heritability, because an analytical study of the
precision of EBLUP(a) is mathematically complex (Rob-
inson, 1991).

Simulation Procedures

A species with overlapping generations, a yearly mat-
ing season, a trait measured in both sexes (e.g., body
weight), and females with single progeny in any given
year was simulated. The base population consisted of
10 sires and 100 dams. The number of breeding animals
was kept constant during either 10 or 15 subsequent
cycles of selection and mating in the simulation experi-
ments conducted in this research. The total number of
records in each replicate was either 1,110 or 1,610. The
heritability was estimated by either REML or Method
O using the records of the animals in the base popula-
tion and of the animals in generations 1 to 10. The
single-trait animal model used for data generation and
breeding value prediction was as follows:

Yijk = 8i + gj + bxjji + @i + ek

where y;; is the trait under selection; s; and g; are
classification variables representing the effects of the
i sex and j* contemporary group, respectively; b rep-
resents the regression coefficient of the trait on the x;j,
age; and a;;, is the random breeding value of animal %
and e;; the random error. For each record, sex was
assigned at random with equal probabilities, with
males weighing 20 kg more than females. There were
10 contemporary groups (each with 10 records) in every
generation, and a total of 100 contemporary groups in
every replicate. Contemporary groups were assigned
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such that the first animal went to the group 1, the
second to group 2, the eleventh to group 1, and so on.
Constants for contemporary group effects ranged from
0 to 100 kg. The regression (b) coefficient of the trait
on the age of the animal when y;;, was measured was
0.5 kg/d. Age (in days) was assigned at random by draw-
ing from an N(400, 10,000).

The variance of y;; in the animal model was o? =
03 + 02, where 03 is the additive genetic variance or
variance of the breeding values (a;;) and o? is the error
variance. The phenotypic variance (¢2) was 500. Herita-
bility (h?) of the trait is h? = 03/02. For the base popula-
tion, breeding values were sampled from an N(0, ¢%)
distribution, with o set equal to h?s2. In any generation
after the base, the breeding value of animal £ was calcu-
lated as follows:

ak=1as+1au+¢k
2 2

(Bulmer, 1985), where a, and a, are the breeding values
of the sire and of the dam of &, respectively. The random
variable ¢, is the Mendelian effect of animal k. The
variance of breeding values and of ¢, were, respectively,
equal to:

Var(az) = (1 + F,)h%0?

0h202

_ (Fs + Fp)o
2 O

10
Val‘(d)k) = § B].

where F}, F, and Fp are the inbreeding coefficients of
the individual, its sire and its dam, respectively. The
¢, were sampled from an N(0,Var(¢;)) distribution. In-
breeding coefficients were calculated using the algo-
rithm of Quaas (1976). Males and females were ran-
domly mated but sire-daughter and dam-son matings
were avoided. The three oldest males (replacement rate
= 0.33) and the 10 oldest females (replacement rate =
0.10) were culled each generation. The replacements
were from progeny born during the same year and se-
lected on either BLUP(a) or EBLUP(a) with h? esti-
mated by REML or Method 0. In all cases truncation
selection using the greatest BLUP(a) or EBLUP(a) was
practiced. All records were used to build the MME.

Estimation of Heritability

Heritability was estimated by either REML or
Method [0 at the end of generation 10. Let the animal
model in matrix notation be:

y=XB+Za +e

with y, 8, a, and e the vector of records, fixed effects,
breeding values, and errors, respectively. The incidence
matrix X relates records to parameters in 3, and the
matrix Z relates records to breeding values. The distri-



2556

bution of the breeding values is N(0, A h? ¢2), where A
is the additive relationship matrix.
REML. The REML estimate of h? was calculated as
follows:
o4

}‘12 —
REML — A9 A2
OA + 0Oy

with the REML estimates of the variance components

03 and o? calculated by an EM-type algorithm (Demp-
ster et al., 1977), in order to speed up convergence:

&Z[k] _ é[k]’é[k]
e o aa A-1 [k - 1]
n-p-q+tr(C**A™) o
AR A-1g [k
ok _ ¥ A 1glA!

q- tr(caa A—l) a[k -1]

with n, q, and p, the number of records, animals, and
fixed effects in 3, respectively. The scalar a* is the
ratio of 621 to 43 ~ U in iteration [k - 1]. Also, é*
and é* are EBLUP of @ and e, respectively, calculated
at iteration k. The matrix C* is the portion of the in-
verse of the coefficient matrix of the MME associated
with the breeding values. True values of the parameters
were used in the MME as priors.

Method 0. A sampling scheme of 50% was employed
as suggested by Reverter et al. (1994a), keeping the
same set of solutions in both the sampled (H) and the
whole (W) data sets, so that the complete A matrix was
used. The sampling scheme consisted of eliminating the
“even” records for 50 animals and the “odd” records for
the next 50 individuals, and so on. Other similar 50%
sampling schemes that were tried (sampling all even
records or all odd records) gave similar results and are
not reported. The MME using W and H data sets were
calculated starting with the true value of h? as prior.
In order to estimate h? by Method [, we iterated on
the following ratio proposed by Reverter et al. (1994a):

_d'wA_ldH
R.o=———_
aHA (2524

If R, <1, h?is overestimated so that its estimated value
should be decreased. On the contrary, if R, > 1, then h?
is underestimated and its estimated value should be
increased. When R, is equal to 1 the estimated h? is
equal to the “true” one.

Convergence Criterion. The same convergence crite-
rion was used for both methods of estimation. At the
end of each round the current value of h? was calculated,
and convergence was considered to be attained when
the value of the difference between two successive iter-
ates of h? was equal to 0.0001. In all cases, Method
O converged to the stopping criterion in 40 or fewer
iteration, whereas the number of REML estimates
needed to reach convergence ranged from 2 to 60. Both
methods met the convergence criterion in all replicates.
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Simulation Schemes

Empirical Expected Values and Mean Square Errors
of Heritability Estimates. Based on the loss of pedigree
information during selection for predicted breeding val-
ues, four situations were used to compare the consis-
tency and the empirical mean square error (EMSE)
of Method O with REML: a) complete information: all
records and all pedigree relationships were retained to
estimate h%; b) 50% sires not identified: the paternities
of half the records were lost at random; ¢) 50% dams
not identified: the maternities of half the records were
lost at random; d) S + D not identified: the paternities
of 12.5%, the maternities of 12.5%, and the paternities
and maternities of 12.5% of the records were lost at
random. Situation a) is the ideal case to estimate h?
(Sorensen and Kennedy, 1984) and is termed “ignorable
selection” by Im et al. (1989). The other situations repre-
sent “non-ignorable selection” (Im et al.,1989), and van
der Werf and de Boer (1990) observed REML to be
biased in this case. All four situations were compared
with the case in which the choice of replacement ani-
mals was at random: e) “no selection.”

To calculate EMSE of h? estimates, let 6;, be the
estimated value of h? due to method i ( = REML or
Method [0) for replicate & (£ = 1,..., 100), and let 6 be the
true value of the parameter. Then, EMSE; for method of
estimation i was calculated as follows:

100
z (0n — 0)?

k=1
EMSE; 50

Time of Selection and Sampling. Estimates of h? will
be “unbiased” if all data used for selection decisions are
taken into account by the estimation method (Im et
al., 1989). Such is not the case with [, because of the
sampling procedure involved. In order to disentangle
the effects of selection and of sampling, different sets
of situations were simulated: f) selection and sampling
during generations 1 to 5; g) selection during genera-
tions 1 to 5 and sampling during generations 6 to 10;
h) selection during generations 6 to 10 and sampling
during generations 1 to 5; and i) selection and sampling
during generations 6 to 10.

Mean Square Error of Prediction of Breeding Values.
Some notation is needed for the statistics used to com-
pare empirical MSEP of breeding values calculated
with either REML or Method O estimates of h%. Predic-
tion error variance (PEV) of breeding values is denoted
as PEVIBLUP(a)], whereas mean square errors of pre-
diction of EBLUP(a) are denoted as MSEP[EBLUP(a)
+ REML] or MSEP[EBLUP(a) + R]. Let a;; be the
breeding value and a;,; be either the BLUP(a) or
EBLUP(a) of animal [ ( = 1,..., 1,610; 110 in the base
population plus 15 generations of 100 animals each),
within replicate £ (k = 1,..., 100 ). The subscript i corres-
ponds to either the use of true h%, or h? estimated by
REML or by Method [, in the mixed-model equations.
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Table 1. Average estimates of heritability (h?) derived by REML and Method O from
simulated data with true values for h? of 0.1, 0.4, and 0.7

h?=0.1 h?=0.4 h%=0.7
Item REML O REML O REML O
Complete information® 0.100 0.100 0.400 0.412 0.697 0.761
50% Sires (S) not identified” 0.083 0.082 0.321 0.374 0.554 0.657
50% Dams (D) not identified* 0.092 0.112 0.365 0.438 0.637 0.757
S+D not identified? 0.062 0.060 0.295 0.351 0.526 0.644
No selection® 0.097 0.109 0.398 0.408 0.693 0.717

2Complete genealogical information: no loss.

bAfter simulating the data, a random 50% of sire identifications were lost.
‘After simulating the data, a random 50% of dam identifications were lost.
4S+D not identified: the paternities of 12.5%, the maternities of 12.5%, and the paternities and maternities

of 12.5% of the records were lost at random.

“No selection: random choice of replacements, with complete genealogical information.

The statistics PEV[BLUP(a)], MSEP[EBLUP(a) +
REML], and MSEP [EBLUP(a) + R], were calculated
in two steps. At the end of every replicate, the 1,610
differences (a;,; — a;,;)) were averaged using the follow-
ing formula:

1,610
- 2

(G — @)

MSEP,, = 1=1

1,610

Finally, the 100 MSEP;, were averaged to obtain MSEP;
(i = true h?, or h? estimated by REML or by Method )
as follows:

100
Z MSEP;,

k=1
MSEP; 100

Results

Empirical Expected Values of Heritability Estimates

The REML and O estimates of h?, as averages of 100
replicates, are shown in Table 1. When all relationships
among animals were used to estimate h? under selection
(complete information), REML estimates were closer to
the base population h? than method [ estimates. When
a fraction of the parental identifications, or maternal
identifications, or both, were misssing, estimates of h?
by REML and by Method [0 were biased due to a “non-
ignorable” selection process (Im et al., 1989). When no
selection was practiced and replacement animals were
chosen at random, both methods of estimation were
seemingly unbiased.

Mean Square Errors of Heritability Estimates

The EMSE of h? estimates are shown in Table 2. The
EMSE of Method [0 were approximately 2.7 to 8.7 times
larger than the EMSE of REML.

Timing of Selection and Sampling

The theoretical results of Im et al (1989) may suggest
that the sampling involved to estimate h? by Method
00 would produce estimates closer to the parameters for
situations g) and h) than for f) and i). This result was
observed when selection and Method [0 sampling oc-
curred in generations 6 to 10 (situations h and i). Be-
cause there was no sampling involved to obtain REML
estimates, they were not affected by these sampling
procedures. Also, generations of selection did not affect
REML estimates of h? (columns 1, 3, and 5, Table 3)
because all data used for selection purposes were in-
volved in the estimation process. The EMSE values of
h? estimates corresponding to the schemes discussed

in this section are not shown, because they are similar
to the EMSE in Table 2.

Mean Square Error of Prediction of Breeding Values
When Heritability is Unknown

Effects of method of estimation of h? on the mean
square error of prediction of EBLUP(a) in populations
under random mating or selected by BLUP(a) or
EBLUP(a) are presented in Table 4. The first row shows
empirical PEV, using BLUP(a) calculated with the true
value of h% The analyses of data arising from random
mating resulted in higher PEV[BLUP(a)] than analyses
of selected data. The opposite was true when h? was
estimated by either REML (row 2) or Method O (row
3). Under either random mating or selection, PEVI-
BLUP(a)] was always smaller than MSEP[EBLUP(a)
+ REML], which was, in turn, smaller than MSEP]I-
EBLUP(a) + R].

Discussion

An objective of this research was to check on the
consistency and EMSE of Method [0 under different
types of selection. The first selection scheme was identi-
fied as “complete information” in Table 1 and has the
following characteristics: 1) complete pedigree informa-
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Table 2. Average mean square error for estimates of heritability (h?) derived by REML
and Method O from simulated data with true values for h? of 0.1, 0.4, and 0.7

h?=0.1 h?=04 h?=0.7
Item REML O REML O REML O
Complete information® 0.00104 0.00348 0.00322 0.00944 0.00261 0.02262
50% Sires (S) not identified® 0.00086 0.00317 0.00320 0.01006 0.00253 0.01109
50% Dams (D) not identified® 0.00134 0.00704 0.00329 0.01659 0.00271 0.01927
S+D not identified? 0.00081 0.00291 0.00441 0.01371 0.00432 0.01832
No selection® 0.00115 0.00432 0.00334 0.00910 0.00198 0.01644

2Complete genealogical information: no loss.

bAfter simulating the data, a random 50% of sire identifications were lost.
‘After simulating the data, a random 50% of dam identifications were lost.
4S+D not identified: the paternities of 12.5%, the maternities of 12.5%, and the paternities and maternities

of 12.5% of the records were lost at random.

“No selection: random choice of replacements, with complete genealogical information.

tion to a base population of unselected, unrelated, and
noninbred animals (Sorensen and Kennedy, 1984) and
2) all data employed to estimate h? were retained and
their distribution was completely specified (Im et al.,
1989). Under this scheme, the mean of REML estimates
was closer to true parameter values than the mean of
Method [0 estimates. Using the missing data theory of
Rubin (1976), Im et al. (1989) concluded that if esti-
mates of the dispersion parameters are calculated using
all data employed in making selection decisions, the
selection process may be “ignored,” and estimation may
proceed as if selection never occurred. Computer simu-
lations have shown that methods based on likelihood
functions, such as Maximum Likelihood (ML; Roth-
schild et al., 1979; Cantet, 1990) or REML (Ouweltjes et
al., 1988; Cantet, 1990), were not biased by “ignorable”
selection. The three remaining selection schemes were
simulated by losing a fraction of parental identities.
These schemes produced estimates of h? by both meth-
ods that were biased downward (rows 2 to 4 in Table
1). When replacement animals were chosen at random
(no selection), both REML and Method O estimates
were close to the true values of h? (last row in Table
1). The magnitude of EMSE for Method O estimates of
h? were systematically several times larger than EMSE
of REML (Table 2), indicating that Method [ was far
less accurate in this research. There is ample evidence

that the estimation of dispersion parameters in selected
populations using likelihood-based methods produces
smaller EMSE than quadratic methods (ML vs Method
I of Henderson, Rothschild et al., 1979; REML vs Hen-
derson’s simple method, Ouweltjes et al., 1988; ML and
REML vs MIVQUE and Henderson type III, Cantet,
1990). Data reported in Table 3 included all combina-
tions of generation of selection and generation of sam-
pling and showed that the generation when sampling
occurred had little effect on Method O estimates of h?
when selection and sampling occurred in the initial (1
to 5) generations. This effect was larger when selection
and sampling occurred in the final (6 to 10) generations.
The use of the complete relationship matrix by Method
0 may have partially accounted for the selection prac-
ticed in our simulation, even though some of the records
on which selection decisions have been based were not
included in the sampling to calculate Method [I. Soren-
sen and Kennedy (1984), using MIVQUE, and van der
Werf and de Boer (1990), using REML, observed that
use of the complete relationship matrix produced seem-
ingly unbiased estimates of h? under selection, when
not all the records on which selections decisions were
made were used in the estimation.

In practice, animal breeders calculate BLUP(a) by
replacing the true value of h? by an estimate. Kackar
and Harville (1981) found that this two-stage proce-

Table 3. Average estimates of heritability (h?) derived by REML and Method 0 from
simulated data with true values for h? of 0.1, 0.4, and 0.7

h?=0.1 h?=0.4 h?=0.7
Ttem REML O REML O REML O
Selection I, Sampling I* 0.101 0.108 0.392 0.395 0.695 0.716
Selection I, Sampling F° 0.101 0.111 0.392 0.393 0.695 0.710
Selection F, Sampling I° 0.099 0.104 0.391 0.391 0.695 0.698
Selection F, Sampling F¢ 0.099 0.107 0.391 0.427 0.695 0.725

2Selection and Method [0 sampling in generations 1 to 5.

bSelection in generations 1 to 5 and Method [ sampling in generations 6 to 10.
“Selection in generations 6 to 10 and Method [0 sampling in generations 1 to 5.
dSelection and Method O sampling in generations 6 to 10.
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Table 4. Mean square error of prediction for breeding values for randomly mated and
selected populations when heritability was estimated by either REML or Method O

h%?=0.1 h%2=04 h?=07
Item Random Selection Random Selection Random Selection
True 39.12 37.92 98.30 95.48 104.31 101.08
REML 40.08 47.51 99.50 103.27 105.31 108.80
O 41.62 63.47 101.55 113.79 112.64 198.38

dure, more appropriately called EBLUP(a) (Robinson,
1991; Harville and Carriquiry, 1992), yields unbiased
estimators of linear functions of the fixed effects and
predictors of functions of random effects, provided that
1) the data vector is symmetrically distributed about
its expected value; 2) the estimators of the variance
components are translation-invariant (i.e., the expected
value of the estimating statistics does not depend on
the fixed effects); and 3) the variance components are
an even function of the data vector. A statistic S is said
to be an even function of a data vector y if S(y) = S(—y).
Restricted Maximum Likelihood (Patterson and
Thompson, 1971) uses even and translation invariant
statistics (Kackar and Harville, 1981). Harville and
Carriquiry (1992) pointed out that MSEP of EBLUP(a)
(say, “PEVIEBLUP(a)]”) calculated as if variance com-
ponents were known seems to underestimate MSEP[-
EBLUP(a)] by approximately two times Var[EBLUP(a)
— BLUP(a)]. In other words; “PEV” of breeding value
calculated under the pretense that dispersion parame-
ters are known underestimate MSEP. The use of con-
cepts such as bias, PEV, or MSEP in the mixed linear
model requires that the matrices X, Z, and A be fixed
under repeated sampling. This approach was followed
by Henderson (1975) to derive his conditional selection
model. However, as pointed out by Gianola (1999), the
idea is unrealistic from an animal breeding point of
view. Fixing the incidence and the relationship matri-
ces would imply, for example, that in all conceptual
replicates the same contemporary group effect and age
are assigned to the same animals, and the same rela-
tionships among animals will be established. Therefore,
fixing X, Z, and A restricts the number of cases exam-
ined, making the results applicable only to those situa-
tions. At the same time, calculating MSEP in a condi-
tional scheme suggests some caution to using the ana-
lytical results of Harville (1985) on the decomposition of
prediction error. Harville (1985) decomposed prediction
error into four terms due to 1) inherent, “in the sense
that it would be unavoidable even if there were com-
plete knowledge of the joint distribution” of @ and y, 2)
unknown distributional form, 3) unknown means, and
4) unknown dispersion parameters. Harville (1985)
gave conditions under which all four components are
uncorrelated, one of them being multivariate normality
of @ and e. The MSEP[EBLUP(a)] calculated with h?
estimated by either REML or Method [ were higher
than PEVI[BLUP(a)] because of the presence of the

fourth term. Another possible explanation may lie in
the generation of positive covariances among some of
the terms. Thus, the term due to unknown dispersion
parameters may be highly correlated with the term
related to the unknown means, indicating that a high
error in estimating h? induces a higher prediction error
due to having to estimate the means. In the present
research, the increased variability in estimates of h?
affected EBLUP(a). Therefore, as EMSE of Method [
was higher than EMSE of REML, MSEP of EBLUP(a)
calculated with Method [0 was greater than that calcu-
lated with REML estimates. The latter statistic was
closer to PEV[BLUP(a)], indicating that EBLUP(a) cal-
culated using REML estimates produced more accurate
predictions of breeding value than Method [J, especially
under selection. In conclusion, the variability of h? esti-
mates calculated with Method [0 was greater than the
variability of h? estimates calculated with REML, with
or without selection. Also, the MSEP of EBLUP(a) cal-
culated using estimates of h? by Method 0 was larger
than MSEP of EBLUP(a) calculated with REML esti-
mates of h2

Implications

For genetic evaluations with actual data, dispersion
parameters are unknown. However, prediction of breed-
ing values proceeds as if dispersion parameters are
known. This approach underestimates the possible
changes in predicted breeding value, although the effect
is not large when variance components are estimated
by REML. Estimates of h? by Method [ are more vari-
able than estimates of h? by REML, either for unse-
lected data or for data undergoing selection, with a
complete or an incomplete relationship matrix.
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