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ABSTRACT: Mixed-model equations for the 
reduced animal model with maternal effects and 
different genetic grouping of unknown parents for 
additive direct and maternal effects are derived. 
The matrices that relate the expected value and 
the variance of the breeding values of non-parents 
to the parents, as well as the different contribu- 
tions of parental and non-parental breeding 
values, to the resulting mixed-model equations are 
presented. Mis-specification of additive maternal 
variance and the additive covariance between 
direct and maternal effects, arising from missing 

information on the dams of known individuals 
with records, is discussed. To avoid an incorrect 
specification of the variance-covariance matrix of 
the records without having to invert a nondi- 
agonal variance of the residual terms, the breed- 
ing values of the unknown dams of individuals 
with records are included in the equations. Breed- 
ing values of non-parents are back-solved after the 
solutions for genetic groups and breeding values 
of parents are computed as simply as in cases in 
which maternal effects are absent. A numerical 
example is included to illustrate the derivations. 
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Introduction 

Maternal effects are currently being included in 
the genetic evaluation of animals for breeding in 
beef cattle populations (Benyshek et al., 1988). Best 
linear unbiased prediction (Henderson, 1973) under 
the animal model (AM; Henderson and Quaas, 
1976) and reduced animal model (RAM; Quaas and 
Pollak, 1980) are used for this purpose. A large 
system of equations must be solved to use AM, but 
often not all solutions are needed for selection and 
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mating decisions. This is especially true for 
animals that are not parents, and these usually 
outnumber parent animals. 

Modifications of the Animal Model 

The RAM is an  equivalent model, in the sense 
described by Henderson (19851, to the AM, but 
fewer equations must be solved. Solutions for 
RAM are obtained by absorbing non-parents, or by 
modifying the procedure for constructing Hender- 
son's mixed-model equations IMMEI by expressing 
non-parental breeding values (BV) in terms of 
parental BV. 

Genetic grouping (Robinson, 1986; Quaas, 1988; 
Westell et al., 1988) is a means of treating 
incomplete pedigree information to account for the 
effects of past selection on estimators and predic- 
tors. Westell et al. (1988) gave a set of rules for 
incorporating genetic grouping in the AM. These 
are analogous to the simple rules needed for 
calculating the inverse of an  additive relationship 
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matrix (Henderson, 19761. However, for large data 
sets, the AM may be computationally unfeasible, 
especially if maternal effects are included in the 
model. 

Quaas (19881 found an explicit formula for the 
matrix (&I that relates individuals to their popula- 
tions means: the genetic groups. This formula 
involves a function (more precisely, II - PI-l) of the 
matrix P that describes the passage of genes from 
parents to offspring. Further, Quaas (1988) showed 
that the vector of BV (a) and the matrix of additive 
relationships among individuals IA) are also func- 
tions of (I - P1-l. The fact the u! - PI-1 also describes 
the flow of genes from ancestor to offspring 
(Henderson, 1976; Quaas, 1988) and that this 
matrix appears in a, A, and Q, highlights that 
genetic grouping via the matrix Q is consistent 
with the rules of additive inheritance. 

Van Vleck (1990al extended genetic grouping 
theory to accommodate maternal effects. His 
formulation requires that the same criterion be 
used to assign groups for both direct and maternal 
effects. Further, Van Vleck (1990bl obtained RAM 
equations for this model. However, different ge- 
netic trends for direct and maternal effects on 
weaning weight have been reported by Benyshek 
et al. (19881 and Cantet (1990). In this situation, 
assigning different groups may avoid confounding 
between direct and maternal groups and with 
other effects in the model. Cantet (1990) extended 
genetic grouping theory to accommodate differen- 
tial criteria when assigning groups for direct and 
maternal effects. 

An important issue when working with AM or 
RAM for a maternally influenced trait is that mis- 
specification of genetic covariance arises when 
identification on dams of individuals in the pedi- 
gree is missing. Calculating additive genetic 
covariances between any two individuals when 
maternal effects are present requires knowledge of 
the two individuals and their dams (Willham, 
1963). The objective of this study is to provide a 
RAM with genetic grouping and with maternal 
effects that is an  alternative to the one presented 
by Van Vleck (1990b). The equations obtained 
include missing dams of individuals with records 
and allow the use of different criteria to assign 
groups for direct and for maternal effects. The 
presentation is based on the concepts described by 
Quaas (1988) and complements the research 
described by Cantet (1990). Although several ma- 
trices are employed to derive the MME for RAM 
with genetic grouping, most of them are not 
explicitly needed to perform the actual computa- 
tions. For the purpose of notation, a letter “0” used 
as a subscript will refer to direct effects, where “m” 
as a subscript will refer to maternal effects. The 
capital letters “P” and “N”, used either as super- 

scripts or subscripts, will refer to parent and non- 
parent, respectively. The subscript “b” will be used 
for the unknown, missing, or “phantom” (Westell et 
al., 1988) parents of “known” individuals with or 
without records. The use of b (for “base”) is to keep 
consistency with the notation of Quaas (19881 and 
does not imply that all missing parents are treated 
as belonging to the same “base” population (Taylor 
and Tomaszewski, 1989). 

Animal Model with Genetic Groups 

An AM with genetic grouping that includes 
maternal effects (Benyshek et al., 1988); Hender- 
son, 1988; Van Vleck, 1990a,b; Cantet et al., 
1991a,b) for a vector of record y can be written as 

where y is an  n x 1 vector of records and X is an  n 
x p incidence matrix that relates data to the 
unknown vector of location parameters p. The 
incidence matrices Z,, Zm, and Em relate the 
unknown random vectors of direct BV (a,), mater- 
nal BV (am), and maternal environmental effects 
(em), respectively, to y .  The unknown vector E 

contains the random residuals due to environmen- 
tal effects peculiar to individual records. 

There are a individuals with a direct BV in a, 
and a maternal BV in a m .  These a x 1 random 
vectors can be written as 

a m  Qmgm 

where &,(a x ngo) and &,(a x ngm) are known 
incidence matrices relating BV to their respective 
means: the ngo elements of go and the ngm 
elements of g,. The matrices Qo and Qm may be 
equal, as in Van Vleck (1990a,b), or not, as in 
Cantet (19901. The latter implies that different 
criteria are used to group animals for direct and 
for maternal effects. Differential grouping may be 
used in those situations in which the additive 
genetic trend for direct effects is previously ob- 
served to be different from the additive trend for 
maternal effects, as in Benyshek et al. (19881 or 
Cantet (1990). 

Direct BV for individuals without records and 
maternal BV for non-dams are predicted by means 
of the correlated structure of [a,’la,’I’, using the 
method of Henderson (19771 when including ran- 
dom variables not in the model for records. The 
random vectors a: and al$ are such that 
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E ["I=[ a m  : ]  
Var [ ai ] = [ OAoAm 'O ".̂ -I &m @ A 131 

am 

The a x a positive-definite matrix A contains the 
additive relationships among animals. Dispersion 
parameters Go, Gm, and dAoAm are the variances 
of additive direct and additive maternal effects 
and their covariance, respectively. Let Go be the 2 
x 2 matrix in 131 that contains these parameters. 
Hence, we have 

E [E:]= [ Qmgm 

r 1 

[41 
L 2 

The vectors em and E are assumed to have zero 
expectations, to be independent of each other, and 
to be independent of the vectors of BV. The 
variance-covariance matrix of em is I c ? ~ ~ .  The 

scalar nd is equal to the number of known dams. 
The matrix em is of order n x nd. The variance of E 

is E,  a positive-definite diagonal matrix with non- 
zero elements equal to ( T ~ E ~ ,  for those individuals 
with a record in y and with identified dam, and to 
&m + oko for individuals with a record in y but a 
missing dam. 

Using all these specifications, the expected 
value of y in [11 is 

"d 

and the variance of y is 

Specifying Var(y) for Individuals 
with Missing Dams 

A problem when writing Var(y1 is that the 
additive part of the variances, or the covariances 
between individuals, may be mis-specified when 
information on some of their dams is missing. Lack 
of dam identification may lead to expressions for 
Var(y) that do not correspond with the assump- 
tions of the model. The genetic part of the record 

of individual i with dam j in model [ l l  is aoi + amj. 
The additive covariance between individuals i and 
k with dams j and 1 (Willham, 19631 is 

where Aij is element i,j of A. Expression 171 shows 
that the additive covariance between relatives 
when maternal effects are present is a function of 
the additive relationships Aik, Ail, Ajk, and Ajl. 
Conversely, the additive covariance between rela- 
tives when maternal effects are absent is a 
function of only one additive relationship: Aik. 
When dam identification is missing, the additive 
relationships between the dam of the individual 
and other individuals are computed as 0, zeroing 
out (partially or completely1 all associated 
parameters from the expectation. As an example, 
consider individuals S, D, and 0, the last two with 
records. Parents of S and D are unidentified. S is a 
male, D a female, and both are the parents of 0. 
Ordering the vectors of records as [YDIyO]', of BV 
for direct effects as [ ao~ lao~ lao~ l '  and of BV for 
maternal effects as IamslamDlamol', the matrices 
Z,, Zm and A are 

0 1 0  0 0 0  
= [ o  0 I ]  z m =  [ o  1 0 1  

1.00 0 
A = [ 0 1.00 

.50 .50 1 .oo 

The matrices of Var(y1 associated with c$~, aim, 
and oAoAm, respectively, are 

r 1 

Using [71 to check these matrices indicates that 
only c$o is properly accounted because &m is 
lacking from Var(yD) and cov (YDJJO). Also, oAOh 
is lacking from Var(yD1, whereas its coefficient in 
COV(YD,YO) is 1 instead of the correct 1.25 (Willham, 
1963). One way of solving the problem is to write 
the remaining fractions of the coefficients of &m 

and aAoAm that are unaccounted due to lack of 
dam identification into two matrices that are 
added to R, for example. However, this compli- 
cates computing the MME due to the need of 



REDUCED ANIMAL MODEL AND DIFFERENTIAL GROUPING 1733 

inverting a nondiagonal R. Another possibility is 
to enlarge the vectors a, and a, with the BV of 
the missing or “phantom” dams (Westell et al., 
1988) for all those individuals with records in y and 
unidentified dams as described by Van Vleck 
(1990a,b1. “Phantom” dams are assumed to be 
unrelated and to have one single progeny in either 
a, or a, (Quaas, 1988; Westell et al., 19881. In the 
example the “phantom” dam of D (N, say) is 
included in a, and a, such that, if animals are 
ordered N, S, D, and 0, we have 

1 0 .5 .25 
0 .5 

A = [ ’  .5 .25 0 .5 1 .5 1 .5 

With this enlargement the correct matrices for 

GArn and OAoAm in Var(y1 are obtained: 2 

It should be pointed out that only BV of “phan- 
tom” dams of individuals with records in y have to 
be incorporated in a, and a,. Note that a missing 
dam for S does not help writing Var(y1 properly, in 
the example, and increases the order of the 
vectors of BV unnecessarily. 

For individuals with unidentified dams, &m 
should also be added to the diagonal elements of 
Var(y) (Henderson, 19881. To force the variance of 
any record to include c&, residuals in t11 can be 
written as 

Let nh be the number of “phantom” dams included 
in a, or a,. Then, matrix M of order n x nh 
associates records to the environmental deviations 
of “phantom” dams (e:). Because every missing 
dam has only one progeny, off-diagonals and 
diagonal elements of MM’ for individuals with a 
known dam are equal to zero, whereas diagonal 
elements for individuals with missing dams are 

equal to 1. Observe that R in [SI can be written 
such that R = MM’o~, + InG2Eo. 

Reduced Animal Model 
with Genetic Grouping 

Let ng be the number of groups for both direct 
and maternal effects. Then, the number of equa- 
tions in the AM with genetic grouping [11 is (p + ng 
+ 2(a + nh) + nd). A sizeable reduction in this 
number is possible by using a RAM with genetic 
grouping if the number of “phantom” dams that 
are to be included in a, and a, is small and the 
number of non-parents is large relative to the 
number of parents. Ordinary RAM requires parti- 
tioning the data vector y into np records of 
individuals with progeny (yp; parents) and n N  
records of individuals without progeny (YN; non- 
parents) so that y’ = [yp’,y~’ 1. A conformable 
partition can be used in X, Z,, Zm, Q,, Qm, em, M ,  
A, a,, a,, and E. The incidence matrices for BV in 
[11 (after enlarging a, and a m  with “phantom” 
dams for individuals with records) are 

MP 
Zm = [ MN 

Matrix 2, has columns 

I 
I r91 

2: O V n N  

OnNxnp 2: 

2; OnpxnN 

2:’ OnNxnN 

of zeros except for those 
relating a record of a parent or a non-parent with 
the maternal BV of its identified or “phantom” 
dam. Note that 2, contains zero submatrices as- 
sociated with non-parents with no recorded 

P progeny themselves. Submatrices Mp and 2, 
relate records of parents to maternal BV of 
“phantom” and identified dams, respectively. Cor- 
responding association between records of non- 
parents to maternal BV of “phantom” and identi- 
fied dams is by means of MN and 2,. 

Appendix A presents the matrices involved in 
the partitions of a,, a,, Q,, Q,, and A. To obtain 
equations for RAM with genetic grouping, the BV 
of “base” parents are ordered such that “phantom” 
sires precede “phantom” dams. Hence, Pb = 

LP&l#Dl. It is assumed that each non-parent has 

only one record in y (i.e., 2: = I,,), a reasonable 
assumption for maternally influenced traits that 
are usually observed once during the lifetime of 
the individual. After all these specifications, the 

NP 
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following equivalent model (Henderson, 19851 to 111 
can be written: 

4- 

where the matrix QE is such that uFm = Qzg, + 
ubm. Also, E(a,,) = 0 so that E(a,,I = Qmgm. Note 
that the model equation is expressed in terms of 
ubm rather than abrn, the latter being the maternal 
BV of the “phantom” dams. 

An important characteristic of [lo1 is that the 
variance-covariance structure of the residuals is 
diagonal and uncorrelated with other random 
vectors in the model: 

D* D* D D 

D* D 

0 1 

Appendix B presents a proof that [11 and [lo1 are 
equivalent models. The QP-transformation of 
Quaas and Pollak (1981) is used to obtain MME for 
model [lo1 that are amenable to calculation. Let 
the vector of QP-transformed solutions for 1101 be: 

and define: 

Then, QP-transformed equations for model [lo1 are 

where 

L 

The matrix Ap contains the additive relationships 
among the “phantom” dams of animals with 
records and known parents. Also: 

L -1 

In practice, the part of the system of equations I l l 1  
that involves F-matrices may be formed as a 
weighted (by a diagonal R1 least squares matrix 
while reading the data file. The central block of A* 
can be calculated by the rules described by Cantet 
(19901, which extend those of Westell et al. (1988) 
and Quaas (1988) when maternal effects are 
absent. 

Backsolving for Non-Parents 

The BV for direct and maternal effects for non- 
parents can be calculated by first solving Equa- 
tions 11 11 and then, by replacing random variables 
in LA41 by their corresponding predictors. 

The approach of Henderson (1985, 1988) will be 
used to calculate the Mendelian residuals for 
direct and maternal effects. Observe that 

where BLUP(eN) = i = yN - FN6. Therefore, the 
direct Mendelian residuals for non-parents can be 
predicted by means of 

The fact that the matrix on the right of I121 is 
diagonal allows obtaining the direct Mendelian 
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residual for non-parent i using scalar operations 
as follows: 

The scalar si is equal to Vi if i has an  unidentified 
sire and 0 otherwise. The scalar mi is the diagonal 
element of MM’ corresponding to non-parent i and 
is equal to 1 if i has a missing dam and equal to 0 if 
the dam is known. Vector F N ~  is row i of J”. After 
[121 is calculated the maternal Mendelian residu- 
als for non-parents are obtained by 

N ^ N  BLUP(4,) = $m = 

1131 

Appendix C presents the derivation of the 
predictors of BV for non-parents, which are equal 
to 

Example 

Consider a pedigree with 11 individuals, 5 of 
them are parents and 6 non-parents. Capital 
letters denote the individuals (all of them having 
records) and small letters the unknown or “phan- 
tom” parents. Numbers in parentheses indicate 
the groups to which the unknown parents belong 
for direct and maternal effects. The pedigree file is 
as follows: 

Individual Sire Dam Parentage 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 

parent 
parent 
parent 
parent 
parent 

non-parent 
non-parent 
non-parent 
non-parent 
non-parent 
non-parent 

Let the records for A to K be 228, 264, 213, 209, 
210, 190, 210, 260, 215, 230, and 191, respectively. 
Sex is the only fixed effect in the model; A, B, F, H, 
and J are males and C, D, E, G, I, and K are 
females. 

We now show the different matrices involved in 
the transformed RAM with genetic grouping Equa- 
tions i l l] .  The matrix Fp that relates records of 
parents to the vector of solutions is as follows: 

The matrix Mp of order 5 (number of parents) by 
6 (number of “phantom” dams) is equal to 

A 
B 

Mp C 

D 
E 

- - 

- b d e g i l  
1 0 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  

0 0 0 0 1 0  
0 1 0 0 0 0  - 

The matrix FN relating records of non-parents to 
the vector of solutions is equal to 

Because there is only one non-parent (K) with a 
“phantom” dam (11, the matrices PfD and MN are of 
order 6 (number of “phantom” dams) by 6 (number 
of non-parents) with all elements equal to zero 
except for the (6,s) which is equal to .5 for qD, and 

equal to 1 for M ~ .  
The matrices PNp, which relates BV of non- 

parents to the parental ones, and Z:‘, which 
relates records on non-parents to maternal BV of 
parents, are of the same order (6 x 5 )  and are equal 
to 

G .o .5 .5 .o .o 
.o .5 .5 .o .o 

I H I  .o .o .5 .o .o PNP = 

.o .o .o .o .o 

.5 .o .o .5 

.O J i l  
F 
G 
H z:p = I 
J 
K 

- A B C D E  
0 0 0 0 1  
0 0 1 0 0  
0 0 1 0 0  
0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 0  - 
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Observe that 2:‘ has columns equal to zero for 
the sires (A and B1 and equal to two times the 
columns of PNP corresponding to dams (C, D, and 
El. 

The matrix of maternal environmental effects 
for records of non-parents is as follows: 

1.00 .oo 
.50 .50 
.50 .50 
.oo 1.00 
.50 .50 

.50 .50 

.50 .50 

.50 .50 

.25 .75 

.50 .50 

.50 .50 

_ -  _ _  

- 

F 
G 

N H 
I 
J 
K 

E ,  = 

.500 .500 

.750 .250 
1.000 .ooo 
.ooo 1.000 
.500 .500 

,625 .375 
.875 ,125 
.875 ,125 
,500 .500 
.250 .750 
.500 ,500 

_ _  _ _  

- 

C D E 
0 0 1 
1 0 0 
1 0 0 
1 0 0 
0 1 0 
0 0 0 

- 

- 
The central block of A* in 1111 is a function of 

A;’ and of the following matrices: 

A 
B 
C 

H 
I 
J 
K 

A 
B 
C 
D 

H 
I 
J 
K 

The (colvariance components are 2Ao = .5, 

= .30, oAoAm = -.20, &m = .25, and (T2Eo = 1.00. 

ET AL. 

The residual variances of parents and non-parents 
are Rp = I5 1.25 and RN = Diag(1.25, 1.25, 1.25, 
1.25, 1.25, 1.501, respectively. 

Restrictions imposed to solve the equations 
were to set to zero group 2 of direct effects and 
group 2 of maternal effects. The resulting solutions 
were males = 234.578, females = 197.1; group 1 of 
direct effects = -18.1232, and group 1 of maternal 
effects = 20.176; BV for direct effects: “phantom” 
dams: b = -17.5117, d = -.516515, e = -1.93473, g 
= -17.8636, i = .346237, 1 = -.465241, parents A to 

BV for maternal effects: “phantom” dams: b = 

1.06884, d = 18.1099, e = 23.4435, g = 21.2143, i = 

1.38945, 1 = 18.315, parents A to E = 9.53915, 
16.3584, 21.3153, -.0819643, 4.5376; maternal envi- 
ronmental effects: C = 1.55437, D = .293636, E = 

-6.74102. Mendelian residuals of non-parents F to 
K for direct effects (Equations [1211 are as follows: 

-2.326193; and for maternal effects (Equations [131): 
2.696406, ,1532442, -.848481, .0734879, -.117454, and 
.093482. Finally, BV for direct effects of non- 
parents F to K predicted by means of 1141 are 
-15.4105, -8.43678, -5.93247, -4.23434, -5.96416, and 
-12.7835, respectively. Corresponding maternal BV 
are 13.1444, 18.9901, 17.9884, 10.7679, 4.61114, and 
10.5532. 

E = -15.1093, -8.18981, -7.91753, 2.59371, -9.1491; 

-6.741046, -.38311, 2.121 1999, -.183716, .2936405, 

Discussion 

The equations for RAM with genetic grouping 
with maternal effects obtained here, as well as the 
ones of Van Vleck (1990b1, require the inclusion of 
BV for “phantom” dams in a, and a,. As a 
consequence, the number of animals to be evalu- 
ated increases and so the computational burden. 
Including the BV of unidentified dams is a way of 
avoiding mis-specification of &m and oAoAm. 

Westell et al. (1988) absorbed the BV of missing 
dams for the situation in which maternal effects 
are absent. In this case the absorption only takes 
place in the A* part of the system. However, when 
maternal effects are fitted in the model, absorption 
of the BV of phantom dams involves submatrices 
of both A* and F&plFp of [ l l l .  At this time it is not 
clear whether the absorption can be computed in a 
feasible way and additional research is needed in 
this direction. 

If groups for direct and for maternal effects are 
to be assigned under the same criterion, the 
results will be the same as in Van Vleck (1990b1, if 
the same constraints are imposed to solve the 
equations. From the point of view of estimation in 
linear models, assigning the same groups for 
direct and maternal effects to missing parents 
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produces a replicated set of columns in the 
estimation space (Zyskind, 1969). This, in turn, 
makes solutions of groups for direct and maternal 
effects difficult to interpret, as observed by Van 
Vleck (1990a,b). More discussion on this topic can 
be found in Cantet (19901. Conversely, differential 
assignment of groups for direct and maternal 
effects seems to be useful when different genetic 
trends for both types of effects are previously 
observed. For example, Benyshek et al. (1988) and 
Cantet (1990) found a positive genetic trend for 
additive direct effects, whereas the trend for 
additive maternal effects was zero. In this situa- 
tion, only one group would be needed for maternal 
effects. 

Implications 

The model with different assignment of genetic 
groups for direct and maternal effects is appropri- 
ate for estimating direct and maternal breeding 
values when the additive genetic trend for direct 
effects has been previously observed to be differ- 
ent from the additive genetic trend for maternal 
effects. The reduced animal model presented here, 
that incorporates different direct and maternal 
genetic groups into the mixed-model equations, 
allows computing breeding values of parents and 
non-parents with currently used algorithms. Inclu- 
sion of “phantom” dams in a, and am avoids mis- 
specification of maternal additive variance and 
additive covariance between direct and maternal 
effects, when dam information is missing. Specifi- 
cation of these covariance components should be 
carefully considered, especially if they are to be 
estimated from the data. 
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APPENDIX A: 
Expressions for the Partitions 

of aor am, Qo, Q,, and A 

The BV of any individual can be expressed as a 
linear function of the BV of individuals in previous 
generations plus a residual term due to Mendelian 
sampling (Quaas, 1988). Reference to three concep- 
tual “generations” is needed when obtaining a 
RAM with genetic grouping, and these make up 
the “base” individuals plus missing parents from 
further generations, the parents and the non- 

P parents, with vectors of direct BV equal to abo ,  a,, 
and a:, respectively. Corresponding BV for mater- 

nal effects are a b m ,  am, and am. Put a,  = [ao lao l’, 
and am = Ia,la,I’. It is assumed that every 
individual in the “base” population has only one 
progeny and there is no inbreeding, as in Quaas 
(1988). Therefore, the direct and maternal BV can 
be written as: 

P N P N  

P N’ 

r 1 

where P b  is the matrix that relates individuals in 
the “base” to animals in a, (or in am), P is the 
matrix that relates individuals in a, (or in am), and 
q50 and +m are vectors of individuals’ deviations 
with respect to the mid-parental BV for direct and 
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maternal effects, respectively, caused by Men- 
delian sampling of genes (Quaas, 19881. After 
rearranging and solving for [u,’lu,’l’, gives 

The non-symmetric matrix [Pb(PI that describes 
the gene flow can be partitioned as 

where Pb’ and p”d” relate the BV of parents and non- 
parents, respectively, to “base” individuals. The 
submatrix Ppp describes the relationship between 
the BV of parents and PNP describes the relation- 
ship between the BV of parents and non-parents. 
The submatrices on the right of P are zero because 
there is no transmission of genes from non-parents 
to parents or among non-parents. If all non- 
parents have parents in a, (or in urn), Pf;’ is a null 
matrix. Using these submatrices in [All, the vector 
of non-parental BV for direct and maternal effects 
can be written as 

P P 

N N‘ The vector [t$, contains the Mendelian segre- 
gation residuals of non-parents for direct and 
maternal effects. 

The a x a matrix (la - PI is 

It can be verified that the inverse of (la - PI is 
equal to 

For the procedure of Westell et al. (1988) and 
Robinson (1986) in absence of maternal effects, 
Quaas (19881 showed that Q, of can be represented 

[Qb ,Qb I’ relates “base” individuals plus missing 
parents to their population means. The i,j element 
of Q, is the expected fraction of the ith animal’s 

such that Qo = (Ia - p)-’Pb Qbo. The matrix Qbo = 
P N’ 

ET AL. 

genes deriving from the jth population. To obtain a 
suitable expression for RAM with genetic group- 
ing requires that &, be partitioned into a sub- 
matrix associated with parents (QZ) and another 

submatrix associated with non-parents (QY) such 
that the latter is a linear function of the former. A 
closer inspection of Q, reveals that 

r 1 

[A71 

N N  The factor PbQb in Q: accounts for those non- 
parents with one or two unknown parents to be 
associated with direct genetic groups. 

By a similar reasoning Qm can be partitioned 
into QL and QZ such that 

Qm = 

Associated with the partition of u in parental 
and non-parental BV, there is a corresponding 
partition of A in 

APP APN 
A = L  ANP ANN 

In the absence of inbreeding, Quaas (1988) 
showed that 

Note that PbPb = Diag(.25mi}, for mi = 0,1,2 = the 
number of “base” parents of the ith individual. This 
is due to p b  having at  most two .5 terms in any 
row, the remaining elements in the row being 
equal to zero. The number of missing parents is nb. 

Letting D = PbPd + .51 = Diag(.25mi + .5}, we 

have that 
“b 
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[ unP - pPP)-l (1 - pPP)-1 p N P  
nP 

0 I"N 

and, on noting that A p p  = ( I  - PPpl-' D p p U  - PpP)-l, 
A is: 

Therefore, the relationship matrix among non- 
parents ANN can be expressed as a function of the 
relationship matrix among parents (App), the tran- 
sition matrix PNp and a diagonal matrix PtPy + 
.5Il associated with the relationships between base 
individuals and non-parents plus the Mendelian 
residuals of non-parents. 

Expressions [All, [A21, [A41, [A71, and [A81 ex- 
pands the work of Quaas (1988) to the situation in 
which there are maternal effects. Formulas [A31, 
[A51, [A61, and [A91, also based on Quaas (19881, 
provide an  insight of the relationships between the 
elements of the additive relationship matrix A (and 
its inverse) in different generations. 

APPENDIX B: Proof That [ 11 and [ 101 are Equivalent Models 

Two linear models are equivalent if their expected values and variance-covariance matrices are equal 
(Henderson, 19851. First we show that ECy) under [11 and I101 is the same. Using the definitions of 2, and 
2, in [91 and disregarding the random vectors of environmental deviations which have zero expectations, 
the E(y) in [11 is 

Observing that all random vectors on the right of model [lo1 have zero means, the E(y) is 

- - 

= Var 

"I ~ f ; :  em € + 



1740 CANTET ET AL. 

The last equality holding after [21. 
The variance of [lo1 is 

Notice that the second row for the direct BV in [B41 is 

The last equality follows from [A41 after replacing direct BV by starred BV (deviated from their means). 
Therefore, expressions [B31 and [B41 are equal. 

APPENDIX C: Derivation of [14]: BV for Non-Parents 

By [A41, BV of non-parents can be predicted by means of 

After i l l 1  is solved and the Mendelian residuals are calculated by means of 1121 and [131, all predictors 
needed in [Cll are available except for the BV of the unknown sires of non-parents in uto and arm. To 
obtain the direct BV of these “phantom” sires write 

where Q;: relates direct BV for missing sires ( aEo) of non-parents to direct genetic groups. The random 

variables with zero mean (a:: 1 in [C21 are the same as those in the residuals of non-parents in [lo]. Hence, 

predictions for a:: are needed because estimates of go are ava’ .ble from [ill. These predictions can be 
obtained in the same way as the predictions for direct Mendeli; residuals in [121. Interestingly enough, 
for those non-parents with an unknown sire, both predictions are the same, i.e., BLUP(a;:) = BLUP(4,). 

To see that observe that BLUP for a:; and 4: are linear functions of BLUPGN) as both random variables 

are part of the residuals for non-parents in [lo]. Therefore, if cov(abo,c 1 = C O V ( ~ ~ ,  E”), their BLUP will 
be the same. To simplify notation the direct BV of the sire of non-parent i is denoted as aosi. Hence 

N 

S* N’ 
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N 1 
COV(aoSi.Ei 1 = cov(uosi, posi) 

under the assumption of no-inbreeding. A similar pro0 
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N N  1 
= -Go 2 = cov($,i, q 1 IC31 

can be used to show that BLUP for the starred 
maternal BV (with zero means) of the unknown sires of non-parents, B L U P ( U ~ ~ ) ,  are equal to BLUP(OZ1 
and can be calculated by [131. 

After taking estimators and predictors in [CZl, replacing with them in IC11 and taking advantage of ICs], 
predictors for the BV of non-parents are 

or: 

which is expression [141. 




