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ABSTRACT

Aboveground net primary production (ANPP) of

grasslands varies spatially and temporally. Spectral

information provided by remote sensors is a

promising new tool that may be able to estimate

ANPP in real time and at low cost. The objectives of

this study were (a) to evaluate at a seasonal scale

the relationship between ANPP and the normalized

difference vegetation index (NDVI), (b) to estimate

seasonal variations in the coefficient of conversion

of absorbed radiation into aboveground biomass

(ea), and (c) to identify the environmental controls

on such temporal changes. We used biomass-based

field determinations of ANPP for two grassland sites

in the Flooding Pampa, Argentina, and related

them with NDVI data derived from the NOAA

Advanced Very High Resolution Radiometer (AV-

HRR) satellites using three different models. Results

were compared with data obtained from the new

Moderate Resolution Imaging Spectroradiometer

(MODIS) sensor at an additional site. The first

model was based solely on NDVI; the second was

based on the amount of photosynthetically active

radiation absorbed by the green vegetation

(APARg), which was derived from NDVI and

incoming photosynthetically active radiation

(PAR); the third was based on APARg and ea, which

was in turn estimated from climatic variables. NDVI

explained between 63 and 93% of ANPP variation,

depending on the site considered. Estimates of

ANPP were not improved by considering the vari-

ation in incoming PAR. At both sites, ea varied

seasonally (from 0.2 to 1.2 g DM/MJ) and was

significantly associated with combinations of pre-

cipitation and temperature. Combining ea varia-

tions with APARg increased our ability to account

for seasonal ANPP variations at both sites. Our re-

sults indicate that NDVI produces good, direct

estimates of ANPP only if NDVI, PAR, and ea are

correlated throughout the seasons. Thus, in most

cases, seasonal variations of ea associated with

temperature and precipitation must be taken into

account to generate seasonal ANPP estimates with

acceptable accuracy.
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INTRODUCTION

Aboveground net primary production (ANPP)

varies with season, but such variations are difficult
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to measure due to methodological limitations.

Traditional methods for estimating ANPP are based

on biomass harvesting, which is expensive and

not exempt from errors and methodological

problems (Sala and others 1988; Scurlock and

others 2002). Due to the time and effort required,

ANPP estimates based on biomass harvesting are

spatially and temporally limited: data may be ob-

tained for only one or a few places and times and

then must be extrapolated. Additionally, differ-

ences in the methods used to convert biomass

harvests into ANPP may introduce variations of up

to 400% in the ANPP value estimated from the

same harvests (Scurlock and others 2002). Spec-

tral information generated by coarse-resolution

sensors onboard satellites has the potential to be

used to estimate ANPP in real time, at low cost,

and with full area coverage. However, translating

remotely sensed data into ANPP remains a major

research challenge. Attempts to do so at an annual

time scale have been numerous and successful

(Tucker and others 1985; Box and others 1989;

Hunt 1994; Gamon and others 1995; Paruelo and

others 1997, 2004; Rassmusen 1998; Matsushita

and Tamura 2002; Smith and others 2002; Wylie

and others 2002; Awaya and others 2004) but

only a few studies have correlated seasonal vari-

ations in ANPP with spectral indices (Bartlett and

others 1989; Nouvellon and others 2000; Paruelo

and others 2000).

Several spectral indices that can be used to

estimate vegetation variables have been proposed

(Choudhury 1987; Baret and Guyot 1991; Ridao

and others 1998; Fensholt 2004), but the nor-

malized difference vegetation index (NDVI) is the

one most broadly applied. This index integrates

two key spectral features of the photosynthetic

tissues: their low reflectance in the red wave-

lengths and their high reflectance in the infrared

portions of the electromagnetic spectrum. It is

calculated as:

NDVI ¼ ðIR � RÞ=ðIR þ RÞ

where R is the reflectance in the red portion of the

electromagnetic spectrum and IR is the reflectance

in the infrared portion.

The NDVI has been directly related to ANPP in

many ecosystems (Goward and others 1985;

Tucker and others 1985; Box and others 1989;

Prince 1991b; Paruelo and others 1997, 2000).

However, it has been related more thoroughly

with leaf area index (LAI) and, based on this

relationship, with the fraction of photosyntheti-

cally active radiation absorbed by green vegetation

(FAPARg) (Baret and Guyot 1991; Sellers and

others 1992; Gamon and others 1995; Asner 1998;

Gower and others 1999; Reeves and others 2001;

Nemani and others 2003; Asner and others 2004;

Paruelo and others 2004). From the relationship

between NDVI and FAPARg, it is possible to cal-

culate the absorbed photosynthetically active

radiation by green vegetation (APARg) from re-

mote sensing data by multiplying FAPARg by the

incoming photosynthetically active radiation

(PAR), readily available from weather stations. Net

primary production (NPP) can then be derived

from the Monteith (1972) model:

NPP ¼ en

R
APAR

� �

where en is the energy conversion coefficient (g

DM/MJ of APARg) of absorbed radiation into NPP

(Ruimy and others 1999; Running and others

2001). The equation can be modified to estimate

ANPP; hence, ea can be defined as the energy

conversion coefficient of absorbed radiation into

ANPP (Field and others 1995).

The theoretical model proposed by Monteith

(1972) may be used to estimate the seasonal vari-

ation of ANPP from coarse-resolution remotely

sensed data as long as the following two issues are

resolved: (a) the form of the relationship between

NDVI and FAPARg, and (b) the seasonal variation

of ea. The form of the relationship between FAPARg

and NDVI is currently under investigation and

varies widely among biomes. Some authors have

shown that NDVI saturates at high FAPARg values

(generally with LAI values higher than 3) (Sellers

and others 1994) and hence a nonlinear relation-

ship is expected, whereas the findings of others

support a linear relationship (Choudhury 1987;

Goward and Huemmrich 1992; Sellers and others

1994). Radiative transfer models show the mecha-

nistic basis of the constraints on the relationship

between NDVI and FAPARg, quantifying the effects

of background optical properties, canopy structure,

sun/view geometry, chlorophyll content, and so

on. This issue has been widely discussed (Verhoef

1984; Baret and Guyot 1991; Sellers and others

1994; Jacquemoud and others 2000; Combal and

others 2002; Myneni and others 1997, 2002), al-

though much less attention has been paid to cor-

rectly assessing ea variations, which probably have

much larger impacts on seasonal estimates of NPP

from remotely sensed data (Nouvellon and others

2000).

In this study we used empirical approaches to

estimate FAPARg from NDVI using both a linear

and a nonlinear relationship. The description of the
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seasonal changes of ea is probably more relevant

because it has been proven to depend on temper-

ature and on water and nutrient availability (Prince

1991a; Field and others 1995, Gamon and others

1995; Gower and others 1999; Nouvellon and

others 2000). Although the relationship between ea

and these seasonally varying factors is recognized,

it has rarely been quantified for grassland ecosys-

tems. Nouvellon and others (2000) estimated ea

variations at a shortgrass steppe site in Arizona.

They pointed to the lack of information and

emphasized the importance of estimating this

coefficient correctly, particularly in water-limited

ecosystems and when seasonal (rather than an-

nual) ANPP needs to be estimated.

From Monteith’s conceptual model, it follows

that ANPP and NDVI may or may not be directly

correlated, depending on the particular relation-

ships among NDVI, FAPARg, PAR, and ea. A

strong correlation (either linear or nonlinear)

may be expected if ea and PAR are constant or

vary much less than NDVI over the range of

situations in which ANPP is estimated from NDVI,

or if they strongly covary with NDVI. These

patterns likely explain why NDVI is a good sur-

rogate for ANPP at global and regional scales and

on a whole-year basis (Goward and others 1985;

Tucker and others 1985; Box and others 1989;

Burke and others 1991; Prince 1991b; Paruelo

and others 1997; Rassmusen 1998; Potter and

others 1999; Seaquist and others 2003). Seasonal

variations of both PAR (due to seasonal changes

in day length and solar angle) and ea (due to

changes in temperature, soil water, nutrients, and

plant phenology) challenge the ability of NDVI by

itself to estimate ANPP at this temporal scale

(Bartlett and others 1989; Nouvellon and others

2000). Seasonal calibrations will enable us to

explore environmental constraints on ANPP and

elucidate the magnitude and importance of each

factor throughout the year, mainly by assessing

the regional-scale controls of ea.

The objectives of this article were (a) to evaluate

the relationship between ANPP and NDVI at a

seasonal scale, (b) to estimate the seasonal varia-

tions in the coefficient of conversion of absorbed

radiation into aboveground biomass (ea), and (c) to

understand the environmental controls on such

temporal changes. We used three different models

to relate field estimates of ANPP with NDVI ob-

tained from NOAA/Advanced Very High Resolu-

tion Radiometer (AVHRR) satellite images. Results

were compared with data from the new Moderate

Resolution Imaging Spectroradiometer (MODIS)

sensor aboard NASA’s Terra satellite.

MATERIALS AND METHODS

Site Description and Field Data

We studied two rangeland sites situated in the

northern (Magdalena) (35�20¢S, 57�60¢W) and

southwestern (Laprida) (38�32¢S, 61�55¢W) por-

tions of the Flooding Pampa in Buenos Aires

province, Argentina (Figure 1). The Flooding

Pampa is covered almost entirely by rangelands

(natural grasslands and sown pastures). The natural

grasslands are codominated by C3 and C4 grasses of

the genera Stipa, Piptochaetium, Briza, Paspalum, and

Botriochloa. A detailed description of these grass-

lands can be found in Perelman and others (2001)

and references therein. The dominant species in the

sown pastures are grasses such as Festuca arundin-

acea, Lolium multiflorum, and tall wheatgrass (Agro-

pyron elongatum or Elytrigia elongata), as well as

legumes, such as Trifolium repens, Medicago sativa,

and Lotus corniculatus. Mean annual precipitation

ranges from 800 to 900 mm, and PAR ranges from

2,600 to 2,900 (MJ/m2y)1). Precipitation is more
abundant in summer, but short periods of drought
are common due to the high evaporation rates during
this season. Mean temperature varies from 7–10�C in
the coldest month (July) to 20–22�C in the warmest
month (January). Mollisols are the dominant soils
and they are often limited by flooding and alkalinity.
Soils are black and are almost entirely covered by
vegetation, with only some patches of bare soil. Mean
annual ANPP of these different types of grassland is
approximately 6,000–8,500 (kg DM ha y)1) (Sala and
others 1981; Doll and Deregibus 1986; Oesterheld
and León 1987; Rusch and Oesterheld 1997; Paruelo
and others 2000).

We used previously published ANPP data for

each site. For the northern site (Magdalena), we

used measurements (from November 1982 to

November 1983) of Oesterheld and León (1987)

from three different sown pastures of 2, 5, and 13

years of age. The 13-year-old pasture was consid-

ered a natural grassland based on its species com-

position (León and Oesterheld 1982; Oesterheld

and León 1987). Biomass was estimated by har-

vesting ten random plots of 0.4 m2. Green and

standing dead biomass were separated in the labo-

ratory. Litter was collected manually from the same

plots, and all samples were oven dried and weighed

with a precision of 0.1 g. ANPP was estimated by

considering green to standing dead and standing

dead to litter fluxes (for more details, see Sala and

others 1981; Oesterheld and León 1987). Variations

in harvested biomass within plots were low, with a

maximum of 8.0%, a minimum of 2.8%, and an

average of 4.7%. In the southwestern site
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(Laprida), we used ANPP data from 1992 to 1995

presented by Paruelo and others (2000) for five

rangelands that encompass most of the region’s

heterogeneity. Eight 1 m2 plots were randomly

situated in each paddock, and ANPP was estimated

using wire cages and harvesting at 3 cm height,

simulating intense use by livestock. Green and

standing dead biomass were oven-dried and

weighted. Litter was not collected at this site (see

Paruelo and others 2000 for more details).

Spectral Data

We used the NOAA Pathfinder (AVHRR) land data

set (1982–2000) of the NDVI released by NASA in

2000. This new data set solved many of the prob-

lems detected in the prior NDVI time series devel-

oped by NASA (Goward and others 1991; Goward

and Huemmrich 1992; Hanan and others 1995,

1997) and includes normalization for variations in

the solar zenith angles (see effects in Goward and

Huemmrich 1992; Roujean and Breon 1995) and

advanced atmospheric corrections to better account

for ozone absorption and Rayleigh scattering ef-

fects. These changes in image-processing algo-

rithms produced a substantially improved NOAA/

AVHRR data set (see http://daac.gsfc.nasa.gov/

CAMPAIGN_DOCS/FTP_SITE/readmes/pal.html

for detailed information). Unfortunately, no data

were available to perform water vapor and aerosol

corrections. However, it has been shown that these

atmospheric corrections had little effect on NOAA-

derived NDVI values in wetlands in Bolivia (Mo-

reau and others 2003) and changed NDVI inter-

annual variations in grasslands of Canada only

slightly (Cihlar and others 2004). The data set is

made up of 10-day maximum value composites

(MVC) of daily NDVI images (Holben 1986), which

minimizes negative cloud effects, with a pixel of 64

km2 (Agbu and James 1994). NDVI values were

derived from the reflectance values of channels 1

(red, 580–680 mm) and 2 (infrared, 725–1,100

mm) of the NOAA/AVHRR satellites (for more de-

tails, see Agbu and James 1994; James and Kalluri

1994). After extracting pixel values, we calculated

monthly maximum values (from the 10-day com-

posites) to avoid low (downward) deviations of

NDVI caused by cloud effects and satellite errors

not eliminated by the compositing process. After

this correction, we performed a visual evaluation of

NDVI monthly time series to eliminate extremely

high values.

For our analysis, we selected the broadly used

NDVI (Steven and others 2003), although several

recent indexes have been considered to perform

better than NDVI under bare soil conditions

(Roujean and Breon 1995; Fensholt 2004) or very

dense canopies (usually for LAI higher than 3 or 4,

Figure 1. Map of

Buenos Aires province,

Argentina, showing the

Flooding Pampa region

and the locations of the

study sites in Magdalena

and Laprida counties.
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common in forest or crops) (Asner and others 2004;

Haboudane and others 2004). But these situations

do not apply to the grasslands of this study. For

example, the correlation between NDVI and the

new enhanced vegetation index (EVI), both de-

rived from the new MODIS satellites, was found to

be higher than 0.90 (n = 22, P < 0.01) for 22

grassland pixels of the study region during four

different years (G. Piñeiro unpublished).

Data Aggregation

We related field estimates of ANPP with NDVI values

acquired over the same period. We extracted pixel

values from two target areas (one in each site),

which were delineated to avoid agricultural lands.

According to Argentinean agricultural statistics,

only a very small portion of the target area in Mag-

dalena was under cropping during the period studied

(1982–1983 = 3.3% and 1983–1984 = 2.1%), and

almost all the land was covered by natural grasslands

and sown pastures (http://www.sagpya.mecon.gov.

ar). Hence, we defined the target area in Magdalena

from eight pixels that overlaid the field plots. By

contrast, agriculture was important in Laprida. Thus,

we used maps of grassland and crop areas generated

by Guerschman and others (2003) from LANDSAT

TM images. We selected seven NOAA/AVHRR pixels

around the measurement sites with less than 10%

agriculture. NDVI values of the pixels within each

target area were very similar (mean coefficient of

variation for all dates was 4% in Magdalena and 5%

in Laprida), which reflects the homogeneity of the

areas. We averaged the NDVI values of the pixels of

each target area and computed monthly NDVI time

series.

ANPP series were constructed by a weighted

average of field measurements based on the pro-

portion of rangeland types in each target area.

Based on our field experiences, we considered that

50% of Magdalena was covered by natural grass-

lands and 50% by sown pastures (25% 2-year-old

pastures and 25% 5-year-old pastures). Consider-

ing this rangeland cover, we calculated a weighted

average from Oesterheld and León’s (1987) data

and generated a bimonthly time series of ANPP for

the entire target area. For our analysis in Laprida,

we used a similar approach, but we classified the

five pastures into three classes according to their

productivity: high-productivity pastures, low-pro-

ductivity pastures, and tall wheatgrass with natural

grasslands. Based on Guerschman and others

(2003) land-cover classification, we estimated the

proportion of each rangeland class in the whole

target area and calculated a weighted average ANPP

series. Variations in the actual proportions of

rangeland types will not affect paper outcomes

because ANPP was similar among grassland types.

Model Development and Assessment of
ANPP and ea

For each site and for the two sites combined, we

evaluated the proportions of the seasonal variance

of ANPP explained by three increasingly complex

models (Figure 2). The first, the NDVI model,

consisted of a simple regression model of ANPP-

NDVI, whereas the second and third, the APAR and

the Epsilon models, were based on Monteith’s

(1972) rationale.

The NDVI model (Figure 2) postulates that the

seasonal variation in ANPP may be accounted for

by NDVI. Thus, it assumes that PAR, APARg, and ea

either are constant or strongly covary with NDVI.

We generated a model through regressions be-

tween observed values of ANPP and NDVI derived

from the databases described above.

In the APAR model (Figure 2), seasonal varia-

tions in ANPP may be accounted for by APARg. In

contrast to the NDVI model, the APAR model may

better account for seasonal variations in ANPP

when NDVI and PAR are partially uncoupled.

However, ea is assumed to be either constant or

correlated with APARg. The model was generated

through regressions between observed ANPP val-

ues and estimates of APARg, calculated as the

product of PAR and FAPARg. FAPARg was esti-

mated from NDVI according to the three different

methods outlined in the introduction and described

in detail below.

In the Epsilon model (Figure 2), seasonal chan-

ges in ANPP depend on APARg and ea dynamics.

Some authors relate gross primary production

(GPP) with APARg and eg instead of NPP with

APARg and en, and include respiration costs in the

right side of equation (Goetz and others 1999; Liu

and others 2002; Matsushita and Tamura 2002;

Hazarika and others 2005). When measurements of

NPP or ANPP are performed in the field, it is not

necessary to estimate respiration because NPP or

ANPP can be directly related to APARg (Potter and

others 1993; Gower and others 1999; Ruimy and

others 1999; Turner and others 2002; Medlyn and

others 2003; Paruelo and others 1997, 2004). Dis-

crimination of respiration cost represents an

advantage in models developed across biomes be-

cause respiration costs vary among biomes. How-

ever, within a single biome, respiration costs would

be held nearly constant. For these two reasons, we

used the NPP model where respiration costs are
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included in ea (Running and others 2001). A critical

point for applying the Epsilon model is to derive

estimates of seasonal changes in ea. Thus, we ana-

lyzed the climatic controls on ea using multiple

regression analysis. We calculated ea from the ratio

between field values of ANPP and APARg estimates,

which was calculated from NDVI and PAR as de-

scribed below. The climatic variables were obtained

from daily values of precipitation recorded at the

ranches where ANPP was measured and daily val-

ues of temperature recorded at nearby weather

stations (Colonia and Dolores).

We derived FAPARg from NDVI by using three

semi-empirical methods widely used in the litera-

ture: (a) a linear relationship between FAPARg and

NDVI proposed by Choudhury (1987), Goward and

Huemmrich (1992), Ruimy and others (1994), and

Moreau and others (2003) (hereafter referred to as

the ‘‘linear method’’); (b) a nonlinear relationship

between FAPARg and NDVI proposed by Potter and

others (1993), Sellers and others (1994), and

Paruelo and others (1997) (hereafter referred to as

the ‘‘nonlinear method’’); and (c) the average of

the two previous methods as proposed by Los and

others (2000) (hereafter referred to as the ‘‘com-

bined method’’).

In the case of the linear method, we set maxi-

mum NDVI as the 98th percentile of the time series.

Figure 2. Diagrammatic

representation of the calibration

process followed in the three

models used to estimate

aboveground net primary

production (ANPP), based on

remotely sensed data and

climate variables. In the

evaluation process, new

regression models for ANPP

and the coefficient of

conversion of absorbed

radiation into aboveground

biomass (ea) were generated

using part of the data set, and

their ANPP predictions were

evaluated against independent

data. NDVI, normalized

difference vegetation index;

APARg, photosynthetically

active radiation absorbed by

green vegetation; PAR,

photosynthetically active

radiation; FAPARg, fraction of

photosynthetically active

radiation absorbed by green

vegetation.
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Maximum NDVI (0.70) was similar for both areas

and was set to 95% of FAPARg interception,

assuming saturation at high LAI values. Bare soil

NDVI (FAPARg = 0) was assumed to be 0.01. We

obtained the following equation: FAPARg = [min

(1.38 · NDVI ) 0.014), 0.95]. For the nonlinear

method, we directly followed Potter and others

(1993), who recommended a maximum and min-

imum NDVI = 0.67 and 0.004, respectively, which

are equivalent to SRmax = 5.13 and SRmin = 1.08.

SR is the simple ratio index = (1 + NDVI)/

(1 ) NDVI) = R/IR. The resulting equation was:

FAPARg = min [SR / (SRmax ) SRmin) ) SRmin /

(SRmax ) SRmin), 0.95]. This equation results in a

nonlinear relationship between NDVI and FAPARg

and accounts for the widely described saturation of

NDVI at high LAI (greater than 3) (Baret and Guyot

1991; Sellers and others 1992; Los and others 2000;

Asner and others 2004).

Model Evaluation

To evaluate the three models against independent

data, we developed new regression models using

part of the ANPP data set. We used these models to

make predictions that were contrasted with ob-

served ANPP values not used to generate the

models. Due to restrictions in data availability, only

the models for both sites combined were evaluated.

In each case, 16 values were used for model gen-

eration and 5 values were used for model evalua-

tion. We repeated this procedure five times with

different random combinations of data used for

model generation and evaluation (Manly 1997).

For data analyses, we used SAS 8.2, proc reg, and

proc rsquare procedures.

We further evaluated the Epsilon model by

applying it to a different data set with ANPP mea-

sured at La Carola farm near the Laprida site and

NDVI obtained from the MODIS sensor. Compared

to the NOAA/AVHRR data set, MODIS images have

better geometric and radiometric performance and

multispectral characteristics, thus enabling com-

plete atmospheric corrections that increase data

quality significantly (Myneni and others 2002;

Fensholt 2004; Running and others 2004). How-

ever, because the MODIS sensor has only been

functioning since 2000, temporal series analysis

was restricted. The new analysis was performed at

La Carola farm (37�20¢S, 61�30¢W) near the Laprida

site, where estimates of ANPP were taken in the

same manner as described for Laprida, but for the

years 2001 and 2002. We retrieved 16-day com-

posites of NDVI from the MODIS 250 · 250 m

images for the same periods that ANPP was mea-

sured, and we estimated FAPARg from NDVI using

a nonlinear equation generated from maximum

and minimum SR values, as for the NOAA images.

Maximum SR value (SRmax = 10.77) was estimated

by the 98th percentile of grassland pixels; minimum

SR (SRmin = 1.54) was estimated by the 5th per-

centile of bare soil pixels. FAPARg estimated from

MODIS-NDVI was multiplied by incident PAR re-

corded at a nearby weather station to provide

monthly APARg. Seasonal variations of ea were

calculated by dividing ANPP by APARg and were

compared with ea calculated by the multiple

regression equation obtained from the NOAA

images. Precipitation data necessary to estimate ea

were obtained from daily values recorded at La

Carola, and daily temperature was recorded at a

nearby weather station. We used field ANPP values

measured at La Carola to evaluate ANPP estimates

calculated as the product of MODIS-APARg and ea

estimated with the equations that had been ob-

tained from the NOAA/AVHRR images using mul-

tiple regression models.

RESULTS

The NDVI model showed different relationships

between sites. ANPP and NDVI were strongly cor-

related at the Magdalena site (r2 = 0.93, P < 0.01,

n = 6) (Figure 3). The relationship was weaker in

Laprida (r2 = 0.65, P < 0.01, n = 15) or when the

Figure 3. Linear relationships between Aboveground

net primary production (ANPP) and the normalized dif-

ference vegetation index (NDVI) (the NDVI model), for

each site and for both sites together. For Magdalena,

ANPP = 1,303 · NDVI ) 622; r2 = 0.93. For Laprida,

ANPP = 667 · NDVI ) 295; r2 = 0.65. For both sites to-

gether, ANPP = 791 · NDVI)360; r2 = 0.68. All regres-

sions are significant at P < 0.01.
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data from both sites were pooled (r 2 =0.68,

P < 0.01, n = 21). Slopes were not significantly

different between sites (P = 0.21), but intercepts

differed (P < 0.05). Linear models between ANPP

and NDVI showed the best fit for all the cases, but

exponential models also fit the data well (r2 = 0.90,

0.58, and 0.65 for Magdalena, Laprida, and the

pooled database, respectively).

The APAR model did not explain a significantly

higher proportion of the seasonal variation of ANPP

than the NDVI model, even though one more

variable was added (PAR) (Figure 4). As in the

previous model, the Magdalena site had a higher r2

than Laprida and than both sites taken together

(Figure 4). In contrast to the NDVI model, expo-

nential functions fit the data better than linear

functions. When FAPARg was calculated using the

nonlinear method, the proportion of ANPP ac-

counted for by APARg was higher than when it was

calculated by the linear or the combined method.

Before showing the results for the Epsilon model,

we first need to show the results on radiation-use

efficiency (ea) and its relation with climatic

variables, which were inputs to that model. We

found that ea, as estimated from the ratio between

field estimates of ANPP and APARg, varied sea-

Figure 4. Exponential relationships between ANPP and photosynthetically active radiation absorbed by green vegetation

(APARg) (the APAR model), for each site and for both sites pooled. APARg was derived from FAPARg values and PAR.

FAPARg was estimated from NDVI based on the nonlinear method (A), the linear method (B), and the combined method

(C). Regression equations when FAPARg was estimated by the nonlinear method were as follows: for Magdalena

ANPP = 8.50 · e 0.013 · APARg, r2= 0.94; for Laprida ANPP = 33.73 · e 0.0046 · APARg, r2= 0.46; for both sites together

ANPP = 23.32 · e 0.0066 · APARg, r2 = 0.55. Regression equations when FAPARg was estimated by the linear method were as

follows: for Magdalena ANPP = 6.59 · e 0.012 · APARg, r2 = 0.82; for Laprida ANPP = 31.81 · e 0.0042 · APARg, r2 = 0.37; and

for both sites together ANPP = 20.96 · e 0.0060 · APARg, r2= 0.46. Regression equations when FAPARg was estimated by the

combined method were as follows: for Magdalena ANPP = 7.26 · e 0.012 · APARg, r2 = 0.80; for Laprida ANPP = 32.42 ·
e 0.0044 · APARg, r2 = 0.41; and for both sites together ANPP = 21.77 · e 0.0064 · APARg, r2 = 0.51. All regressions were

significant at P < 0.01. FAPARg, fraction of photosynthetically active radiation absorbed by green vegetation; PAR, pho-

tosynthetically active radiation.
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sonally between 0.2 and 1.2 g DM/MJ. The range of

values was similar for both sites (Figure 5). Gen-

erally, ea values were higher in winter and lower in

summer, but periods of high rainfall or drought

increased or decreased ea, respectively, in all

months. Precipitation and temperature were the

main controls on ea variations. At relatively low

values of NDVI, the ea values derived using the

nonlinear method to estimate FAPARg were higher

than those derived using the linear method because

the former method predicts lower FAPARg values

than the latter one. However, for high NDVI values,

both methods converged due to the similar FAPARg

estimates (Figure 5). As expected, the combined

method produced intermediate values of ea. Dif-

ferences among methods were small, resulting in

only 9% variation in ea estimates.

Temperature and precipitation accounted for a

substantial proportion of the seasonal variability of

ea, but the importance of each variable changed

among sites. Precipitation (PP) was significantly

correlated with ea at all sites, but precipitation

anomalies (PPAN = [monthly precipitation ) mean

precipitation] / mean precipitation) accounted for a

larger proportion of ea variations than precipitation

(Table 1). For Magdalena and both sites together,

temperature was not significantly associated with ea.

In contrast, temperature and ea were significantly

related in Laprida (Table 1). Multiple regression

models using precipitation and temperature as

independent variables improved ea estimates for

Laprida and for both sites pooled together, but not for

Magdalena. For both sites together, mean monthly

minimum temperatures (TMIN) increased the vari-

ance explained by PPAN from 0.49 to 0.58 (mean of

the three methods for estimating FAPARg from

NDVI) (Table 2). In Laprida, the multiple regression

model that accounted for most of the ea variations

included PP instead of PPAN and mean monthly

maximum temperatures (TMAX) (Table 2), al-

though PPAN had a higher r2 than PP in the simple

models (Table 1).

The Epsilon model yielded a consistently higher

r2 than the other models both for the individual

sites and the pooled database. The r2 obtained in

the calibration of these models ranged from 0.97 to

0.99 (depending on the method used for computing

FAPARg from NDVI) for Magdalena, from 0.84 to

0.90 for Laprida, and from 0.87 to 0.93 for both

sites pooled together. The nonlinear method always

fit the data better, but differences were insignifi-

cant. The three methods used to estimate FAPARg

from NDVI produced similar ANPP estimates (on

average ±9%), and the combined method always

resulted in intermediate values. However, at high

ANPP, differences in estimated ANPP among

methods were larger (19%).

Correlations among NDVI, PAR, APARg, and ea at

each site help to explain the results obtained by the

three different models. At Magdalena, the three

models performed well because all the variables

were highly correlated (Table 3). On the other

Figure 5. Seasonal

changes in the coefficient

of conversion of

absorbed radiation into

aboveground biomass

(ea) and NDVI.

A Magdalena and

B Laprida. We calculated

ea as ANPP/APARg, with

APARg derived from the

nonlinear method (solid

circles), the linear method

(open squares), or the

combined method (open

triangles). Crosses (·)

show NDVI in the second

axis. ANPP, aboveground

net primary production;

APARg, photosyntheti-

cally active radiation

absorbed by green

vegetation.
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hand, correlations were weaker in Laprida and for

both sites pooled together; hence, the three models

achieved different results with these two databases.

It is interesting to note that the direction of the

correlations between PAR and APARg with ea var-

ied between sites. It is probable that the paucity of

data available at Magdalena is generating these

differences.

Evaluation of the models against independent

data (only performed for both sites pooled to-

gether) showed that the Epsilon model generated

more stable and reliable estimates. For this model,

the coefficients constructed with different sub-

groups of data were particularly similar (Table 4,

coefficient of variation), indicating relatively high

model stability. The NDVI model presented less

stable coefficients. When evaluated against inde-

pendent data, the NDVI and the APAR models

estimated ANPP with lower accuracy than the

Epsilon model (Figure 6). The APAR model also

underestimated productivity at high values. The

epsilon model was the only one that estimated well

the highest, unusual ANPP values. These two ex-

treme values (see Figure 6) increased the r2 of the

regression model, but r2 was still high and signifi-

cant if they were eliminated (r2 = 0.57). For the

other models, r2 dropped to 0.20 and 0.31 when

these values were removed.

Seasonal ea variations derived from the equations

presented in Table 4 correlated well with ea esti-

mates generated from new ANPP data at La Carola

farm and APARg derived from the MODIS sensor

Table 2. Best Multiple Linear Regression Models of ea as the Dependent Variable and Climatic Data as
Independent Variables

r2
adj Slope Intercept

Variable Non-L Lin CM Non-L Lin CM Non-L Lin CM

Laprida

PP 0.64 0.65 0.66 0.042 0.040 0.041 1.04 0.78 0.91

TMAX )0.037 )0.029 )0.033

Both sites

PPAN 0.61 0.55 0.59 0.28 0.25 0.26 0.82 0.63 0.72

TMEAN )0.020 )0.014 )0.017

Non-L, nonlinear; Lin, linear; CM, combined method; PP, monthly precipitation (in cm); PPAN, monthly precipitation anomalies: (observed precipitation–mean precipitation)/
mean precipitation; TMEAN, mean monthly temperature (�C); TMAX, mean monthly maximum temperature, (�C).
For Magdalena there was not a significant multiple regression model.
All variables and both models are significant at P < 0.01.

Table 1. Simple Linear Regression Models of ea as the Dependent Variable and Climatic Data as
Independent Variables

r2 Slope y-intercept

Variable Non-L Lin CM Non-L Lin CM Non-L Lin CM

Magdalena (n = 6)

PP 0.81 0.84 0.83 0.048 0.052 0.050 )0.046 )0.072 )0.013

PPAN 0.85 0.89 0.88 0.37 0.34 0.36 0.40 0.32 0.36

Laprida (n = 15)

PP 0.13 0.22 0.17 0.025 0.028 0.026 0.38 0.26 0.32

PPAN 0.47 0.45 0.47 0.26 0.21 0.24 0.56 0.45 0.50

TMEAN 0.30 0.21 0.26 )0.030 )0.021 )0.025 1.01 0.77 0.89

TMAX 0.35 0.26 0.31 )0.028 )0.020 )0.024 1.15 0.88 1.01

TMIN 0.23 NS 0.20 )0.030 NS )0.025 0.83 NS 0.73

Both sites (n = 21)

PP 0.20 0.31 0.25 0.029 0.033 0.031 0.31 0.19 0.25

PPAN 0.49 0.50 0.50 0.27 0.24 0.26 0.51 0.42 0.46

Non-L, Non-linear; Lin, linear; CM, combined method; PP, monthly precipitation (in cm); PPAN, monthly precipitation anomalies: (observed precipitation–mean precipi-
tation)/mean precipitation; TMEAN, mean monthly temperature (�C); TMAX, mean monthly maximum temperature (�C); TMIN, mean monthly minimum temperature (�C).
Only significant variables (P < 0.10) are shown.
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(r = 0.74, n = 11, P < 0.01) (Figure 7), in spite of the

different spatial resolutions of the NOAA (8 · 8 km)

and MODIS (250 · 250 m) images. Both the mea-

sured e
a
(MODIS-derived) and the estimated ea at La

Carola showed similar seasonal variations when

compared to the values obtained with NOAA images

Table 3. Cross-correlations between Variables Registered for Each Site Separately and for Both Sites Pooled
Together

Magdalena (n = 6) Laprida (n = 15) Both Sites (n = 21)

NDVI vs PAR 0.69 0.54 0.56

NDVI vs ea 0.90–0.93 )0.02–0.24 0.24–0.46

PAR vs ea 0.47–0.48 )0.42–()0.56) )0.15–()0.30)

APARg vs ea 0.64–0.76 )0.30–()0.39) )0.02–()0.10)

NDVI, normalized difference vegetation index; PAR, photosynthetically active radiation; ea, coefficient of conversion of absorbed radiation into aboveground biomass;
APARg, photosynthetically active radiation absorbed by green vegetation.
Correlations including ea show the range of correlations obtained with the three methods for estimating the fraction of photosynthetically active radition absorbed by green
vegetation (FAPARg) from NDVI—the nonlinear, the linear, and the combined method.

Table 4. Coefficients of Determination and Model Parameters of the ANPP and ea Regressions Performed
with Different Sets of Data

r2 a b c

NDVI model: ANPP = a + NDVI · b

Set 1 0.67 )400 856

Set 2 0.74 )358 802

Set 3 0.52 )193 479

Set 4 0.67 )375 820

Set 5 0.74 )375 817

Mean 0.67 )340 755

Conf. Int. ±0.08 ±73 ±136

STD 0.09 84 156

CV (%) 13 25 21

APAR model: ANPP = a · exp(APARg · b)

Set 1 0.48 21.5 0.0061

Set 2 0.39 24.2 0.0056

Set 3 0.32 28.9 0.0041

Set 4 0.49 20.3 0.0063

Set 5 0.49 18.9 0.0066

Mean 0.43 22.8 0.0057

Conf. Int. ±0.07 ±3.46 ±0.0009

STD 0.08 3.95 0.0010

CV (%) 18 17 17

Epsilon model: ea = a + PPAN · b + TMEAN · c

Set 1 0.73 0.69 0.29 )0.014

Set 2 0.67 0.74 0.27 )0.016

Set 3 0.60 0.74 0.24 )0.018

Set 4 0.59 0.76 0.29 )0.018

Set 5 0.60 0.63 0.28 )0.012

Mean 0.64 0.71 0.27 )0.016

Conf. Int. ±0.05 ±0.05 ±0.02 ±0.002

STD 0.06 0.05 0.02 0.003

CV (%) 9 7 8 17

NDVI, normalized difference vegetation index; ANPP, aboveground net primary production; APAR, photosynthetically active radiation absorbed by green vegetation; PPAN,
monthly precipitation anomalies; TMEAN, mean monthly temperature; Conf. Int., confidence interval; STD, standard deviation; CV, coefficient of variation.
All models are significant at P < 0.05.
Data sets were generated by randomly extracting five values from the entire data set (both sites pooled together).
For the APAR and Epsilon models, the fraction of photosynthetically active radition absorbed by green vegetation (FAPARg) was derived from NDVI using the non-linear
method.
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at Magdalena and Laprida: They were at maximum

in late winter or early spring and minimum in

summer. Low and insignificant correlation between

ea and ANPP is obvious in this graph (Figure 7) (r <

0.2, n = 11, P > 0.72). The ANPP calculated from

APARg derived from the MODIS sensor and ea esti-

mated from the equation in Table 4 generated by the

NOAA/AVHRR images showed good agreement

with the field measurement of ANPP at La Carola

farm (r2 = 0.90, n = 11, P < 0.01).

DISCUSSION

Our results show that low-resolution satellites

provide an effective means of tracking seasonal

variations in ANPP, but it requires some consid-

eration to selecting the proper model to describe

the relationship between spectral indices and

ANPP for a specific site or region. The applicability

of various simple regression models based on

NDVI depends on the strengths of the correlations

among NDVI, PAR, and ea. In the case of the

Magdalena site, because NDVI was seasonally

correlated with both PAR and ea (Table 3), a

simple model relating ANPP and NDVI was ade-

quate to track ANPP dynamics (r2 = 0.93) (Fig-

ure 3). Physiologically, this means that green leaf

area and PAR interception (and likewise APARg)

are coupled with light-use efficiency. However,

this condition is not always met in perennial

grasslands, as shown in Laprida. At this site, NDVI

was not correlated with ea, so a more mechanistic

model (the Epsilon model) substantially improved

our ability to track ANPP variations. Because

NDVI was seasonally correlated with PAR at our

two sites (Table 3), the APAR model did not im-

prove the ability to track seasonal variations in

ANPP. Furthermore, for each site and the two sites

pooled together, the linear regressions between

ANPP and APARg explained a lower proportion of

the ANPP variances than using NDVI alone. Sim-

ilar results were obtained by Rassmusen (1998),

who obtained better and more consistent esti-

mates of rangeland annual NPP in Senegal by

using NDVI instead of APARg.

Due to the lack of direct measurements of FA-

PARg, it remains uncertain whether the inclusion

of ea accounts for real light use efficiency variations

(hypothesis 1) or accounts for the limited sensi-

tivity of NDVI at large values of FAPARg and ANPP

(hypothesis 2). Two lines of evidence support the

first hypothesis. First, the same equation is used to

compute ea at high or low rainfall, and ea variations

improved ANPP estimates not only at high but also

Figure 6. Relationships between

measured vs simulated ANPP

using three different models. (A)

NDVI model. (B) APAR model.

(C) Epsilon model. For method

used to calculate ANPP, see the

equations in Table 4. Data are for

both sites pooled together. For

the APAR and Epsilon models,

FAPARg was estimated from

NDVI based on the nonlinear

method. Simulated ANPP was

estimated with data not included

in the generation of the models.

368 G. Piñeiro and others



at low ANPP values (Figure 6). If the second

hypothesis were true, then the Epsilon model

would not improve ea estimates at low FAPARg or

ANPP values. Second, the Epsilon model improved

ANPP estimates not only with the linear method

but also with the nonlinear method which ac-

counts for NDVI saturation better.

The Epsilon model not only was more accurate in

estimating ANPP (Figure 6), it also had an impor-

tant advantage: It can be used with NDVI data from

a different sensor, as long as the relationship be-

tween FAPARg and NDVI is established for each

sensor. This is an important advantage because

FAPARg is easier to measure than ea or ANPP. The

strength of this approach is based on the description

of ea dynamics from climate variables. Thus, reliable

estimates of ea enable the use of multisensor infor-

mation to derive ANPP time series so that better and

more comprehensive data sets can be obtained—for

example by coupling ANPP series derived from

NOAA/AVHRR and MODIS sensors (Running and

others 2004). The difference in spatial resolution

between the two images did not change ea esti-

mates, probably due to the similarity of the grass-

lands in the area studied with the NOAA/AVHRR (8

· 8 km) to the type of grassland at La Carola farm.

However, for heterogeneous patches of vegetation,

ea is expected to change at different spatial resolu-

tions. Finally, if we consider that the radiometric

quality of the MODIS sensor is much better than the

NOAA/AVHRR sensor (Fensholt 2004), our results

imply that the errors expected in the NOAA/AV-

HRR series due to the lack of a complete

atmospheric correction and inferior radiometric

performance, are actually small.

Our results also provide independent estimates of

ea for these rangelands and showed their relation-

ship with seasonal variations in climate, which

adds substantially to our limited knowledge on this

key aspect of rangeland functioning (Bartlett and

others 1989; Prince 1991a; Gamon and others

1995; Churkina and Running 1998; Gower and

others 1999; Nouvellon and others 2000). Our ea

values (annual mean ea = 0.42 and 0.52 g DM/MJ,

for the linear and nonlinear methods, respectively)

fall within the estimates of other authors for the

grassland biome. For example, Paruelo and others

(1997) estimated the annual ea for a wide range of

grasslands across the US Great Plains. They found

that ea = 0.23 g of carbon/MJ @ 0.48 g DM/MJ. On

the other hand, Ruimy and others (1994), in an

extensive review of ea for different biomes, re-

ported only three estimates for temperate grass-

lands, with a relatively high mean ea of 0.84 g DM/

MJ. Field and others (1995) compared values of e
generated from different global models—the CASA

and Miami NPP/GCM APAR model. Considering a

below-aboveground primary production ratio

equal to 1.3 and a coefficient for conversion of

carbon into dry matter of 2.22 (Ajtay and others

Figure 7. Seasonal variations of measured and estimated values for the coefficient of conversion of absorbed radiation into

aboveground biomass (ea) and ANPP at La Carola farm. Measured ANPP was estimated in the field by sequential biomass

harvests. Estimated ANPP was calculated based on Monteith’s rationale, based on NDVI from MODIS images, daily mea-

surements of photosynthetically active radiation (PAR), and ea calculated from precipitation and temperature data, using

the equation generated from the NOAA/AVHRR images (see Table 4). Measured ea was calculated as measured ANPP

divided by APARg as estimated from the MODIS images. Estimated ea was computed using the equation generated from the

NOAA/AVHRR images (see Table 4).
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1979), these models produced ea values of 0.26 and

0.45 g DM/MJ, respectively. Estimates of ea for

North and South American rangelands were quite

similar. Further studies are needed to explore the

similarities and differences in climatic and biotic

controls on the seasonal and annual dynamics of ea.

In addition, FAPARg field measurements, jointly

with ANPP, are needed to decrease uncertainties in

ea estimates. Hyperspectral remote sensing could be

used in the near future to derive ea estimates di-

rectly from remote sensing data (Gamon and others

1992; Smith and others 2002; Asner and others

2004); however, the availability of continuous

airborne or satellite-derived hyperspectral images is

still restricted to a few places.

The relationship between ea and climatic vari-

ables presented here provides critical empirical

evidence to show that ANPP can be described from

remotely sensed data. We found that precipitation

was the main control of ea throughout the year

whereas temperature played a secondary role,

probably because it was correlated with PAR. Sev-

eral authors have developed theoretical models to

estimate ea from climate and soil variables (Potter

and others 1993; Ruimy and others 1994; Field and

others 1995; Goetz and others 1999; Seaquist and

others 2003), but none of them has evaluated these

models against field data at a seasonal scale. In

these previous studies, precipitation generally was

positively related with ea, as we found. These au-

thors also assume that ea has an optimum response

curve to temperature. However, in the rangelands

that we studied, quadratic models did not fit the

data better than linear models. It is notable that,

whereas temperature in Magdalena was not related

to ea, in Laprida and for both sites together tem-

perature increments reduce the conversion effi-

ciency (Table 1). This finding can be explained by

the elevated PAR values registered in months with

high temperatures. The correlation between tem-

perature and PAR (more than 89% in our sites) in

natural ecosystems makes it difficult to study their

effects on ea separately in field studies.

The selection of different empirical relationships

between vegetation indices and FAPARg had a

relatively small effect on APARg estimates and,

hence, in deriving both ea and ANPP. Our results

indicate that the nonlinear method is a more

accurate way to estimate ANPP, but differences

detected among methods in these grasslands were

quite small. Unfortunately, we did not have

FAPARg measurements to verify whether the

nonlinear method also yielded better estimates of

this variable, which would likely account for the

saturation of NDVI at high FAPARg values (corre-

sponding generally with LAI values greater than 3)

(Baret and Guyot 1991; Goward and Huemmrich

1992; Sellers and others 1994; Haboudane and

others 2004). The correct assessment of ea varia-

tions based on precipitation and temperature data

seemed to have larger effects on the accurate esti-

matation of ANPP than the different methods used

to estimate FAPARg. The latter had an average ef-

fect of only 9% on ANPP estimations, with a

maximum of 19%, whereas ea had an average ef-

fect of 27%, with a maximum of 165% (comparing

the APAR model to the Epsilon model) (Figure 6).

The estimation of FAPARg from NDVI may be

improved by the use of radiative transfer models,

which take vegetation and soil optical properties

into account (Baret and Guyot 1991; Goward and

Huemmrich 1992; Sellers and others 1994; Rou-

jean and Breon 1995; Hanan and others 1997;

Asner 1998). However, the use of radiative transfer

models to derive biophysical variables is not ex-

empt from computational problems (Combal and

others 2002), and they have in some cases over-

estimated FAPARg values (Le Roux and others

1997; Fensholt and others 2004). Moreover, al-

though their use would enable a more thorough

assessment of the relationship between vegetation

indices and FAPARg, it limits the applicability of

our method for estimating ANPP because these

models have several practical limitations at broad

scales (for example, it is difficult to obtain field

values of leaf angle, chlorophyll content, and so on,

for natural grasslands that contain more than 100

species in a single square meter). In the near future,

radiative transfer models could be more applicable,

thanks to the introduction of new multi-angle re-

mote sensors capable of providing some of the

parameters needed to characterize canopy archi-

tecture (for example, the foliage clumping index)

(Bicheron and Leroy 1999; Chen and others 2003).

By now, near-linear relationships between vege-

tation indices and FAPARg have been reported

widely (Bartlett and others 1989; Sellers and others

1994; Gamon and others 1995; Le Roux and

others 1997; Gower and others 1999; Myneni and

others 2002; Turner and others 2002; Wylie and

others 2002). In grasslands, this relationship is al-

tered more by soil reflectance than by canopy

architecture (Roujean and Breon 1995; Asner

1998). The grasslands studied in this paper have

almost 100% vegetation cover; hence, soil effects

are minimized.

The development of models based on spectral

indices capable of estimating ANPP will improve

our understanding of forage dynamics and ulti-

mately make it possible to monitor forage resources
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easily, rapidly, and at low cost. Over large areas,

regional associations of ranchers could apply these

estimates to modify their own forage budget mod-

els and to improve herbage usage and farm plan-

ning. The ability to describe ANPP and ea variations

within and between years will expand our knowl-

edge of grassland carbon cycling and energy ex-

change—two key features in any assessment of the

impact of global change on these biomes (Field and

others 1995; Churkina and Running 1998; Bon-

deau and others 1999; Gower and others 1999;

Potter and others 1999). Our results could also be

used as inputs to global NPP models such as CASA

(Field and others 1995) or Biome-BGC (Nemani

and others 2003) and would improve the ea varia-

tions currently included in these models. Indeed,

they show that the ea of perennial grasslands is

probably more variable throughout the seasons

than is now assumed by these models.

CONCLUSIONS

Our research indicates that:

1. Low-resolution satellites can be used to accu-

rately track seasonal variations in ANPP.

2. Depending on the correlation structure of the

relevant variables (NDVI, APARg, ea), such

tracking may be based simply on NDVI, or it

may require estimates of ea, which in turn re-

quire estimates of APARg.

3. Seasonal variations in ea can be estimated using

meteorological data from weather stations.

These estimates could then be used with APARg

data derived from different sensors.

4. The outcome of the ANPP estimates in the study

was more sensitive to ea variations than to the

differences among the specific methods used to

estimate APARg. Therefore, more effort should

be focused on identifying the environmental

controls on ea than on determining the exact

shape of the relationship between FAPARg and

NDVI.
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