Grass-fed beef production systems of Argentina’s flooding pampas

Understanding ecosystem heterogeneity to improve livestock production

M.S. Cid, R.C. Fernández Grecco, M. Oesterheld, J.M. Paruelo, A.F. Cibils and M.A. Brizuela

Abstract: The homogeneous topography of Argentina’s flooding pampas conceals a substantial amount of spatial and temporal ecosystem heterogeneity. Differences in soils, grassland botanical composition and plant growth regimes that occur down to individual paddocks influence livestock grazing patterns and, predictably, affect the productivity of cattle ranches in the region. Over 40 years of ecological research have greatly improved understanding of the structural and functional heterogeneity of this ecosystem. This better understanding has led to the development of grazing management strategies that help ranchers optimize secondary production by achieving a more efficient use of vegetation. As a result, cattle ranches are rapidly increasing profitability by integrating grass-fed yearling finishing programmes with the traditional cow-calf operations of the region.

Keywords: native grassland; structural and functional heterogeneity; livestock grazing; ranching system productivity; Argentina

Argentina’s flooding pampas

The flooding pampas cover approximately nine million hectares east of the Tandilia hills in the Argentine province of Buenos Aires and include the Salado River and Laprida Basins (Etchevehere, 1961; Vervoort, 1967; see Figure 1). The region is extremely flat, with relative elevation differences that rarely exceed 4 m (Perelman et al, 2001) and exhibits a temperate–subhumid climate with mean annual temperatures ranging from 15.9°C in the...
north to 13.8°C in the south, along with mean monthly temperatures from 6.8°C in the winter to 21.8°C in the summer. Average annual rainfall is approximately 900 mm, with no strong seasonality pattern. During the summer, areas of shallow soils are often subjected to drought due to high atmospheric demand, while the lack of a developed natural drainage network (due mainly to the lack of topographic relief of the region), on the other hand, is responsible for brief flooding events that occur in most years during autumn–spring in the lowland areas (Chanetón et al., 2002).

The flooding pampas constitute a heterogeneous ecosystem (Oesterheld et al., 2005a) comprising mostly native grasslands that are the main livestock forage resource of the region (approximately 80% of the total area). Management inputs aimed at improving rangeland condition and livestock production have increased dramatically in recent decades (Fernández Grecco, 1995). Historically, cow-calf ranching operations have accounted for most of the agricultural industry of the region. Cattle were typically raised in large paddocks (250–400 ha), with an estimated average stocking density of 0.7 animal units (AU) ha⁻¹ yr⁻¹ and a system production of 80–100 kg beef ha⁻¹ yr⁻¹. Over the last decade, a large number of ranches have increased their secondary productivity by adding grass-fed yearling finishing programmes to their production system. The introduction of seeded pastures based on tall wheatgrass (Thinopyrum ponticum) and tall fescue (Festuca arundinacea) together with nitrogen (N) and phosphorus (P) fertilization of both seeded pastures and native rangelands has enabled these system changes. New beef production schemes have brought about a reduction in paddock size and an increase in stocking density and meat production to 1–1.1 AU ha⁻¹ yr⁻¹ and 130–150 kg beef ha⁻¹ yr⁻¹ respectively.

A total of 2.4 million calves, mainly of British breeds (such as Aberdeen Angus and Hereford), are raised annually on Argentina’s flooding pampas. A high percentage of these calves are sent to ranches for pasture-based finishing or to feedlots in different areas of the country, where they are later sold for slaughter once they reach a weight of approximately 440 kg (steers) or 320 kg (heifers). Currently, there are 8.8 million cattle on flooding paddocks, accounting for 16% of the country’s cattle population of 54 million (Rearte, 2006).

Structural heterogeneity of the flooding pampas

The heterogeneity of the vegetation of the flooding pampas was first described by Vervoorst (1967), and then analysed in detail in several phyto-sociological studies (León et al., 1975, 1979, 1985; Batista et al., 1988; Burkart et al., 1990, 1998) that described the botanical composition of plant communities in relation to environmental features such as topography, flooding regime and edaphic salinity and alkalinity. Perelman et al. (2001), who synthesized these studies, found that heterogeneity was higher at the landscape than the regional scale, and reported that plant communities were associated with similar environmental heterogeneity across the region. Five vegetation units have been defined at the regional scale, which occur along gradients of humidity and alkalinity associated with small topographic differences: (1) mesophytic meadows (uplands); (2) humid mesophytic meadows (plains); (3) humid prairies (humid lowlands); (4) halophytic steppes (alkaline lowlands); and (5) humid halophytic steppes, which are associated with a relatively small area of poorly drained fluvial valleys (Figure 2). In addition, vegetated ponds (with, for example, *Typha sp.*) occur across most of the region. Because of their different botanical compositions and their associations with different soil types, the annual average carrying capacity of each community differs, and has been estimated as 1.00, 0.75, 0.60 and 0.30 UA ha⁻¹ yr⁻¹ for the uplands, plains, humid lowlands and alkaline lowlands respectively (see Figure 2). The regional proportions of the area represented by uplands (5%), plains (15%), humid lowlands (55%), alkaline lowlands (1%) and vegetated ponds (20%) that occur over scales of a few kilometres in different proportions and arrangements, were recently estimated from remotely sensed data (Aragón, 2007). However, the percentage of each community in a typical grazing paddock usually differs from regional average values: for example, the alkaline lowlands, when present, usually represent from 10 to 15% of the paddock area. Climatic conditions across the flooding pampas allow the coexistence of C3 and C4 species, which vary in relative abundance along latitudinal and (mostly) topsoil pH gradients (Perelman et al., 2001, 2005). The ratio of C3:C4 grass cover decreases as topsoil pH increases; thus, the relative abundance of C3 or C4 species tends to be highest in uplands and lowest in alkaline lowlands where C4 rhizomatous grasses are dominant (Figure 2). Dallis grass (*Paspalum dilatatum*), annual ryegrass (*Lolium*...
of these species, such as *C. maculatum*, can triple in regrowing plant tissues during dry periods (de la Torre et al., 2005). At present, there are protocols available that use microanalysis of digestive content to confirm livestock ingestion of some plant species that produce acute poisoning (Yagueddú et al., 1998; Cid et al., 2003; Indurain et al., 2006).

Functional heterogeneity of the flooding pampas

The coexistence of C3 and C4 species and mild winters ensures year-round productivity, which, nonetheless, tends to decline from late autumn through mid-winter. Sala et al. (1981) and Hidalgo and Cauhépé (1991) reported that peaks of maximum productivity of uplands, plains and humid lowlands occurred between spring and early autumn, and concentrated between 60 and 70% of the annual biomass production, which until the late 1990s had been estimated at 5.0 to 5.8 ton DM ha–1 y–1. Uplands reach their production peak in mid-spring, plains in late spring–early summer, and the lowlands in mid-summer (Figure 3). The maximum standing crop of alkaline lowlands (1.2 to 2 ton DM ha–1 y–1) occurs at the end of the summer, when saltgrass, the dominant species of this community, becomes the peak standing crop (Sala et al., 1981; Ginzo et al., 1986; Brizuela et al., 1990). This temporal sequence in productivity agrees with the pattern of C3:C4 grass ratio at the landscape level reported by Perelman et al. (2001), and partially supports the hypothesis that the flooding pampas experience two seasonal waves of primary production: a regional wave generated by variation in latitude, and a superimposed local wave generated by topography.

Recent studies using satellite images show two seasonal peaks in Normalized Difference Vegetation Index (NDVI), an estimator of above-ground productivity of native grasslands and seeded pastures of the region (Paruelo et al., 2000; Piñeiro et al., 2006; Grigera et al., 2007). The highest peak occurs during late spring, whereas a smaller peak is registered in the autumn. The mean

Figure 2. Plant communities of the flooding pampas according to gradients of soil alkalinity, carrying capacity, and C3:C4 species ratio. For each community, one of its characteristic plant species is included. Uplands – ‘dallis grass’ (*Paspalum dilatatum*); plains – ‘cola de zorro’ (*Bothriochloa laguroides*); humid lowlands – ‘cebada de agua’ (*Glyceria multiflora*); and alkaline lowlands – ‘saltgrass’ (*Distichlis spicata*).

Figure 3. Seasonal productivity of plant communities of the flooding pampas.

Source: adapted from Hidalgo and Cauhépé, 1991.
Beef production systems of Argentina’s flooding pampas

seasonal productivity pattern exhibits high year-to-year variability; seasonal productivity patterns for any given year tend to deviate markedly from long-term (20 y) averages (Posse et al., 2005; see Figure 4). In some years, the spring peak moves towards the summer, whereas in other years the autumn peak becomes the most significant. On the other hand, the beginning of spring growth, particularly in the Laprida Basin, is highly variable and depends on the intensity and length of droughts that occur during the winter and beginning of the spring (Figure 5). These pronounced variations in seasonal forage productivity can cause either a considerable increase in the need for feed supplements or a sensible decrease in reproductive performance and weight gains of cattle herds, which can have carry-over effects on multiple annual production cycles (Grigera et al., 2007).

At the landscape scale, recent research has shown that seasonal NDVI patterns are predictably influenced by the relative area covered by each plant community (Posse et al., 2005; Grigera et al., 2007; see Figure 4). However, the spatial and temporal variation in radiation use efficiency of the flooding pampas is still poorly understood, although progress is being made in establishing the influence of temperature/precipitation (Piñeiro et al., 2006) and soil/plant community (Grigera et al., 2007) interactions on radiation use efficiency across the region.

Livestock grazing and grassland heterogeneity

The grasslands of the flooding pampas are subjected to the combined effects of grazing, floods and droughts. Grazing promotes a reduction in tussock size, modifies botanical composition by promoting forb invasion (Sala et al., 1986; Sala, 1988) and, when sufficient forage is available, generates vegetation patches that differ in structure and nutritive value (Siffredi et al., 1997). Grazing is associated with diminished spatial heterogeneity of vegetation at the landscape scale (Chaneton et al., 2002) due to the fact that it reduces cover of the most palatable grasses and favours the colonization of exotic and native forbs, which become co-dominant along with several sod grasses. This effect can be reversed either by animal exclusion or by floods that eliminate exotic forbs that, unlike the native species, are not adapted to waterlogged conditions (Chaneton et al., 1988; Insauti et al., 1999). Thus, floods tend to improve the quality and accessibility of forages.

Livestock recognize grassland heterogeneity at the landscape and plant community levels, and thus select communities within paddocks (Escobar, 1994; Siffredi et al., 1997) and species within communities (Brizuela et al., 1983, 1990; Miñón et al, 1984a; Cid and Brizuela, 1994; Vacarezza, 2000; Vacarezza and Cid, 2004). Cattle are frequently observed grazing in the humid and alkaline lowlands during the summer. This suggests that they select communities (that is, utilize them more than would be expected by chance) on the basis of plant growth rates and dominant species type (for example, cool-season [C3] or warm-season [C4] species). Thus, in a situation where cattle would select plant communities based solely on forage value, during autumn, winter and early spring, they would tend to select uplands and plains that had a

Figure 4. Seasonal pattern of the Normalized Difference Vegetation Index (NDVI) from two landscape units of the flooding pampas, one dominated by uplands, and the other by humid lowlands. (a) Average of 15 growing seasons. The error bars are spatial standard deviations across the pixels of the same landscape. (b) Seasonal values for the landscape dominated by uplands.

Source: from Posse et al., 2005.

Figure 5. Frequency distribution of the above-ground net primary productivity (ANPP) of uplands and humid lowlands in October.

Source: from Grigera et al., 2007.
higher percentage of cool-season species than the lowlands. Conversely, from early spring to summer, livestock would select the lowlands, preferentially the humid ones (Fernández Grecco, 1995).

The studies cited above indicate that in most situations, selection of plant communities by cattle are influenced by topography, drinking water location and percentage of each plant community in a paddock (non-interactive factors, in the sense of Senft et al, 1987), which interact with the availability and quality of the forage in each plant community (interactive factors). Thus, total forage availability and percentage of upland and plains plant communities in a paddock (drinking water points are usually located in these communities) are the major factors that determine plant community selection by cattle throughout the year. If forage available in those communities remains above a given value (threshold), cattle will preferentially utilize the lowlands. In this way, depending on the proportion of the different plant communities in a paddock, cattle may select the humid lowlands beginning in late winter or late spring (Vacarezza and Cid, 2004), or only during the summer (Escobar, 1994). On the other hand, the alkaline lowlands may also be selected in late spring (Vacarezza and Cid, 2004), summer (Brizuela et al, 1983, 1990) and even during winter (Escobar, 1994). Gradual reduction in the available forage in the uplands and plains, and animal requirements (according to their body size) suggest that, in cattle–sheep mixed grazing, cattle will be the first to use the lowlands (Vacarezza and Cid, 2004). On the other hand, populations of rheas (Rhea americana), which are frequently found on some ranches of the flooding pampas, are not affected by variations in forage availability, because they consistently select actively growing grasses as well as native and cultivated forbs (Vacarezza, 2000).

Studies conducted in mid- to small-sized paddocks with a strong predominance of one plant community, but with different forage availabilities (total and by species), have determined the plant species preferred by cattle. For example, in uplands and plains, annual ryegrass and Bromus spp. are selected during autumn and winter, and with B. laguroides selected during spring and summer (Cauhépé and Fernández Grecco, 1981; Miñon et al, 1984a). In addition, in paddocks of seeded pastures where plains predominate with dispersed areas of alkaline lowlands, cattle and sheep select tall fescue over tall wheatgrass and saltgrass during the summer (Cid and Brizuela, 1994; Quintana et al, 2006). In these studies, sheep were more selective than cattle (Cid and Brizuela, 1994), and calves more selective than cows (Quintana et al, 2006). However, in late summer, when saltgrass biomass exceeds 10% of vegetation available, cattle select this species over tall wheatgrass (Brizuela et al, 1990). To date, no data on species selection in humid lowlands are available, although L. hexandra, Panicum gounii and Psapalidium paludivagum are frequently found in the diets of cattle and sheep that graze this community during late spring (Vacarezza, 2000).

Regardless of the specific mechanism of diet selection, cattle diets in the region are of higher quality than that provided by the average vegetation. Miñon et al (1984b) reported that in mid-winter, steers with oesophageal fistulas had diets with a higher percentage of green biomass (68 v 22%), were more digestible (46 v 31% DMD) and had a higher crude protein content (11 v 9% CP) than that provided by the average vegetation in paddocks with forage availabilities of 1.5 and 3.0 ton DM ha⁻¹.

Using grassland heterogeneity to enhance productivity of cattle ranching systems

Towards the end of the 1980s, a considerable amount of information regarding the structure and function of grasslands of the flooding pampas was available, in addition to data on rangeland survey methods (León et al, 1975, 1979, 1985; León and Bertiller, 1980; Arana and Maillard, 1981; Sala et al, 1981, 1986; Brizuela et al, 1982; Maceira and Verona, 1984; Cauhépé et al, 1985; Orbea et al, 1985; Insuausti and Soriano, 1987; Batista et al, 1988, 2005). Despite this, information related to grassland utilization (Deregibus et al, 1986; Fernández Grecco et al, 1988) was insufficient to allow producers to develop efficient annual grazing management programmes. Beginning in the mid-90s, new strategies of grassland utilization were proposed to: (a) control grazing and resting periods in order to manage landscape heterogeneity; (b) increase winter forage production by fertilization; (c) promote the abundance of annual ryegrass, a species that is abundant in uplands and plains; and (d) evaluate the effect of continuous and rotational grazing systems on the vegetation of paddocks with predominance of plains or humid lowlands.

(a) Controlled grazing and resting periods for different plant community types

Fernández Grecco (1995) proposed and implemented a strategic management plan for cow-calf production systems, which consisted of establishing grazing and resting periods for each plant community aimed at meeting both plant and herd physiological needs. The planning process included considering the topographic position of the plant communities, periods in which plants experienced water excess or deficit, and the phenology and growth form of their species. In this grazing plan, paddocks are divided into grazing units that segregate the different plant communities (high v low-lying areas), maintaining a small area of uplands or plains in the humid lowland units to provide a dry place for animals to rest. The upland and plains grazing units are used during winter (calving season) and spring (breeding season), whereas the units that include only humid lowlands are used during summer and autumn, coinciding with the last month of the breeding season, weaning and dry cow stage.

Five years of applying this management scheme on a pilot 180 ha pasture at ‘El Quemado’ ranch produced an increase in biomass of some forage species such as P. dilatatum, B. laguroides, L. hexandra and annual ryegrass, and a decrease in the abundance of two of the main weeds, Mentha pulegium and Ambrosia tenuifolia. In addition, annual stocking density increased from 0.65 to 0.93 AU ha⁻¹ y⁻¹ and beef production increased from 65 to 132 kg ha⁻¹ y⁻¹. Ranches associated with the 11 CREA
levels of phosphorus (20 kg P ha$^{-1}$). According to Fernández Grecco (1995), plant communities using different levels of N and adequate levels of phosphorus (20 kg P ha$^{-1}$), with sufficient soil moisture, promoted: (a) late winter forage production, which began 25 to 30 days earlier; (b) an increase in forage production, with forage accumulations (8–10 ton DM ha$^{-1}$ y$^{-1}$) four to five times higher than those obtained without fertilization (Figure 6); and (c) production of high-quality forage (2.5 to 3.0% N and 75% DMD), which enabled ranchers to establish grass-fed yearling finishing programmes (Rodríguez Palma et al, 1999). Currently, plant community-specific grassland fertilization is used by a large number of ranchers as a tool not only to increase forage production, but also to modify the pattern of annual forage distribution by extending the growth season of C3 grasses.

(c) Promoting annual ryegrass establishment
Annual ryegrass establishes early in autumn, has high winter growth rates, responds well to fertilization, and its nutritional value meets the requirements of yearlings undergoing rapid growth. Because of these characteristics, ranchers on the flooding pampas are now able to finish calves weaned in March with grass-fed diets that ensure animals reach slaughter weights in approximately nine months (December).

The use of glyphosate herbicides as a means of promoting ryegrass establishment to increase winter pasture productivity has been widely adopted in recent years. Natural vegetation is thus replaced by annual ryegrass, a strategy that has unfortunately led to a reduction in the abundance of the native cool- and warm-season grasses of high nutritive value, and has favoured perennial weed and annual grasses of low forage value. Consequently, at present, grasslands treated repeatedly with glyphosate exhibit a forage production peak during the winter–spring period at the expense of a decrease in summer grass production. Because of this, prescribed grazing is being proposed as an alternative to herbicides. This strategy consists of intense grazing during January–February to avoid the accumulation of summer growth, and thus facilitate the emergence and establishment of annual ryegrass without affecting warm-season species abundance. Fernández Grecco (2000) compared glyphosate and intense grazing treatments with (20 kg P ha$^{-1}$ and 50 kg N ha$^{-1}$ applied in early March) and without fertilization, and found that both strategies produced the same amount of winter annual ryegrass dry matter for a given fertilization level (Figure 7), but the intense grazing, as opposed to glyphosate, was able to maintain summer forage production (data not shown).

(d) Controlled grazing systems
Traditional year-round continuous grazing with fixed animal numbers has led to a reduction in cool-season grasses and an increase in weeds and bare soil, along with overall grassland degradation (Jacobo et al, 2006), which have resulted in decreased carrying capacity, poorer animal performance and lower profitability (Deregibus et al, 1995). More recently, many of the upland plant communities have been ploughed to grow crops, a phenomenon that has posed the challenge of maintaining the same number of livestock in a smaller area. This has given way to new management strategies that propose seasonal adjustments of the instantaneous stocking density (Deregibus et al, 1995; Fernández Grecco et al, 1995; Pueyo, 1996; Rodriguez Palma et al, 1999; Jacobo et al, 2000, 2006). A number of studies have shown that controlled grazing can double cool-season grass production, including annual ryegrass – which can account for as much as 77% of cool-season biomass increase (Jacobo et al, 2000). This increase in winter forage productivity allowed rotational systems to be stocked at almost twice the rate of traditional continuous systems (1.0 v 0.6 AU ha$^{-1}$). More recently, rotational systems in two plant communities have been shown not only to increase forage production, but to promote an increase in forage quality and a decrease in undesirable plants and bare soil (Jacobo et al, 2006). Thus, proposed controlled grazing systems can improve grassland condition and enhance the nutrition of grazing animals. Less intensive systems involving continuous grazing with variable stocking rates in fertilized pastures have also shown...
promising results (Rodriguez Palma et al., 1999). Information on the morphogenesis of some grassland species, such as Chaeotropis elongata, Hordeum stenotachys, Stipa neesiana, P. dilatatum, Sporobolus indicus and annual ryegrass (Lemaire and Agnusdei, 2000), will be useful in tailoring grazing prescriptions that involve seasonal stocking density adjustments.

Conclusions
Argentina’s flooding pampas constitute a complex ecosystem that sustains a livestock industry that contributes heavily to the national economy. Significant progress in the knowledge of spatial and temporal dimensions of its structural and functional heterogeneity that has occurred over the last 40 years has allowed the development and implementation of management practices that increase and improve the seasonal distribution of primary production. Such knowledge has led to the development of livestock management strategies that, by improving vegetation utilization, have enhanced the productivity of cattle ranches that are rapidly integrating grass-fed yearling finishing programmes with the traditional cow-calf operations of the region.

Acknowledgments
An earlier version of this paper was presented at a Symposium on Rangelands of Argentina at the 60th Annual Meeting of the Society for Range Management in 2007. This symposium was sponsored by Dow Agro Sciences, the Society for Range Management, the Instituto Nacional de Tecnología Agropecuaria (Argentina) and the NSF-LTER Jornada Experimental Range.

References

Beef production systems of Argentina's flooding pampas

Beef production systems of Argentina’s flooding pampas

pastizales naturales de la Pampa Deprimida bonaerense’, Tesis MSc, Facultad Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina.

