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ABSTRACT

A common and simple approach to evaluate models is to regress predicted vs. observed
values (or vice versa) and compare slope and intercept parameters against the 1:1 line.
However, based on a review of the literature it seems to be no consensus on which variable
(predicted or observed) should be placed in each axis. Although some researchers think that
it is identical, probably because 12 is the same for both regressions, the intercept and the
slope of each regression differ and, in turn, may change the result of the model evaluation.
We present mathematical evidence showing that the regression of predicted (in the y-axis)
vs. observed data (in the x-axis) (PO) to evaluate models is incorrect and should lead to an
erroneous estimate of the slope and intercept. In other words, a spurious effect is added to
the regression parameters when regressing PO values and comparing them against the 1:1
line. Observed (in the y-axis) vs. predicted (in the x-axis) (OP) regressions should be used
instead. We also show in an example from the literature that both approaches produce
significantly different results that may change the conclusions of the model evaluation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

sions is the same, it can be easily shown that the slope and
the intercept of these two regressions (PO and OP) differ. The

Testing model predictions is a critical step in science. Scat-
ter plots of predicted vs. observed (or vice versa) values is one
of the most common alternatives to evaluate model predic-
tions (i.e. see articles starting on pages 1081, 1124 and 1346
in Ecology vol. 86, No. 5, 2005). However, it is unclear if models
should be evaluated by regressing predicted values in the ordi-
nates (y-axis) vs. observed values in the abscissas (x-axis) (PO),
or by regressing observed values in the ordinates vs. predicted
values in the abscissas (OP). Although the r? of both regres-
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analysis of the coefficient of determination (r?), the slope and
the intercept of the line fitted to the data provides elements
for judging and building confidence on model performance.
While r? shows the proportion of the total variance explained
by the regression model (and also how much of the linear vari-
ationin the observed values is explained by the variation in the
predicted values), the slope and intercept describe the consis-
tency and the model bias, respectively (Smith and Rose, 1995;
Mesple et al., 1996). It is interesting to note that even in widely
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Table 1 - Number of papers published in Ecological Modelling in 2000 using different types of model evaluation

Total Papers that Papers plotting Using visual graph Estimating
papers evaluate models predicted and interpretation, r? or intercept or slope
observed data other method
Predicted vs. observed (PO) 11 6 5
Observed vs. predicted (OP) 6 2 4
Both regressions 2 1 1
Total 204 61 19 9 10

used software packages (like Statistica or Math Lab), default
scatter plots available to evaluate models differ in the variable
plotted in the x-axis. Is it important to care on what to put in
each axis? Do scientists care?

Quantitative models are a common tool in ecology as
shown by (Lauenroth et al., 2003), who found that 15% of the
papers published in Ecology and 23% of the ones published
in Ecological Application contained some dynamic quantitative
modeling. In order to analyze how ecologists evaluate their
quantitative models we reviewed all articles published in the
journal that more focuses on quantitative modeling (Ecologi-
cal Modelling): For year 2000 we selected the papers that used
either PO or OP regressions to evaluate their models. The
papers were considered in the analysis if a model was eval-
uated. Articles that evaluated a model using the regression
of predicted vs. observed (or vice versa), were separated in
two categories: those that considered slope or intercept in
the analysis and those that used only visual interpretation
of the data or r?2. We found 61 papers out of 204 published
during 2000 in Ecological Modelling that evaluated models and
19 of them did it by regressing either PO or OP data (Table 1).
Papers that did not use regression techniques evaluated model
predictions mostly based on plotting observed and predicted
values both in the y-axis, and time (or some other variable) in
the x-axis. Thus, most papers did not present a formal eval-
uation of their models at the level of the prediction although
they have data to do so. Almost half of the 19 papers that eval-
uated a model using regression techniques performed just a
visual interpretation of the data or used only the r?. The other
half estimated the regression coefficients and compared them
to the 1:1 line. Of these 19 papers, 58% regressed PO data, 32%
regressed OP values and 10% did both analyses. The survey
showed that regression of simulated and measured data is a
frequently used technique to evaluate models, but there is no
consensus on which variable should be placed in each axis.

Several methods have been suggested for evaluating model
predictions, aimed in general to quantify the relative contri-
bution of different error sources to the unexplained variance
(Wallach and Goffinet, 1989; Smith and Rose, 1995; van
Tongeren, 1995; Mesple et al., 1996; Monte et al., 1996; Loehle,
1997; Mitchell, 1997; Kobayashi and Salam, 2000; Gauch et
al.,, 2003; Knightes and Cyterski, 2005). The use of regressions
techniques for model evaluation has been questioned by some
authors (Mitchell, 1997; Kobayashi and Salam, 2000). However,
the scatter plot of predicted and observed values or vice versa
is still the most frequently used approach (as shown in our
survey). Thus, it seems that plotting the data and showing
the dispersion of the values is important for scientists (an
often undervalued issue), that probably promote authors to

use graphic plots of predicted and observed data. However, we
think that this approach should be complemented (not substi-
tuted) by other statistics that add important information for
model evaluation as suggested further on.

In this article we show that there are conceptual and practi-
cal differences between regressing predicted in the y-axis vs.
observed in the x-axis (PO) or, conversely, observed vs. pre-
dicted (OP) values to evaluate models. We argue that the latter
(OP) is the correct procedure to formulate the comparison. Our
approach includes both an empirical and algebraic demon-
stration. We also use a real example taken from the literature
to further show that using a PO regression can lead to incor-
rect conclusions about the performance of the model being
analyzed, and suggest other statistics to complement model
evaluation.

2. Materials and methods

Since the slope and intercept derived from regressing PO or
OP values differ, we investigated which of the two regressions
should be used to evaluate model predictions. We constructed
a X vector with continuous values ranging from 1 to 60.

X =1{1,2,3,...60} 1

Y vectors were constructed to have either a linear, quadratic
or logarithmic relationship with the X vector

YLin =X+ (2)
Yquad = —0.05X2 +3X + ¢ ©)
Yin =30 Ln(X) + ¢ ()

where ¢ is a random error with normal distribution (mean=0,
Stdev=15). Both vectors X and Y are named as observed X
and observed Y, since they mimic data normally observed or
measured in the experiments. Using regression analyses we
adjusted a linear, quadratic or logarithmic model for each Y
vector (see examples in Fig. la-c, respectively):

?Lin =aX + b (5)
Yquad = aX? +bX +¢ (6)
Yin =a Ln(X) +b @)

Egs. (5)-(7) allowed us to generate a vector of predicted val-
ues Y. Each ¥ vector contains 60 §; predicted values for each x;
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Fig. 1 - Examples of regressions generated using X and Y vectors. (a) Linear Yy;, =X +¢, (b) quadratic Yquaq =—0.05X2 + 3X +¢,
and (c) logarithmic Yi, =30 Ln(X) + e. Y vectors have a random error with normal distribution, mean=0 and Std =15.

value of the X vectors. We repeated this procedure 100 times
for each type of model obtaining 300 pairs of Y and Y vectors,
each one with 60 elements. We evaluated model predictions
(Y) by plotting and calculating the linear regression equations
of each paired Y (observed values) and Y (predicted values) vec-
tors, for either PO (§ = b1y + a1) and OP (y = by + a) values.
We then plotted the distribution of slope and intercept param-
eters achieved in the 100 simulations for the linear models.
Since the same data were used to construct the model and to
evaluate model predictions, we expect no bias in the slope nor
the intercept of the regression between Y and ¥. Thus, b; and
b, should be 1, and a; and a, should be 0.

In a second step, we further demonstrate analytically our
empirical findings using basic algebra. In this mathematical
approach we illustrate the relationship between a; and a,, and
between b1 and b,. We also relate both slopes to r2.

Finally, we took an example from the literature and ana-
lyzed the effects of evaluating model predictions by regressing
either PO or OP values. The paper by (White et al., 2000), pre-
sented regressions of predicted (in the ordinates) vs. observed
(in the abscissas) (PO) values and had a table with the data

used, so it was easy to generate the opposite regressions of
OP values. We compared the regression parameters of both
approaches and tested the hypothesis of slope=1 and inter-
cept=0 to assess statistically the significance of regression
parameters. This test can be performed easily with statistical
computer packages with the models:

Vi — i = a1 + b1y + & (8)
Vi —yi=az + boy; + ¢ (©)

The significance of the regression parameters of these
models corresponds to the tests: by, bp=1 and a1, a; =0, for
either regression of PO (Eq. (8)) or OP values (Eq. (9)). If the
null hypothesis for the slope is rejected the conclusion is that
model predictions have no consistency with observed values.
If this hypothesis is not rejected but the hypothesis for the
intercept is, then the model is biased. If both null hypotheses
are not rejected, then disagreement between model predic-
tions and observed data is due entirely to the unexplained
variance.
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We also calculated for Whites et al.’s, data, Theil’s partial
inequality coefficients (Upias, Uslope @nd Uerror), which separate
total error of the predictions (the squared sum of the predictive
error), into different components and complement the assess-
ment of model performance made with the regression (Smith
and Rose, 1995; Paruelo et al., 1998). Theil’s coefficients par-
tition the variance of observed values not explained by the
predicted values (called the squared sum of the predictive
error), being: Upi,s, the proportion associated with mean dif-
ferences between observed and predicted values, Ugepe the
proportion associated with the slope of the fitted model and
the 1:1line, and Uerror the proportion associated with the unex-
plained variance (see Paruelo et al., 1998, for a simple formula
to calculate Theil’s coefficients). Additionally, we estimated for
White et al’s data the root mean squared deviation (RMSD) as

RMSD =

which represents the mean deviation of predicted values with
respect to the observed ones, in the same units as the model
variable under evaluation (Kobayashi and Salam, 2000; Gauch
et al., 2003).

3. Results and discussion

Since model predictions were tested using the same data
used in their construction (the same Y vector), commonly
called an evaluation of the calibration procedure, the regres-
sion of PO values is expected to have no bias from the 1:1
line. As a consequence, we expected that the parameters
of the regression y = b1y +as, be: b1=1 and a; =0. The dis-
persion of the data is a consequence of the random error
introduced in the process of model generation. However, as
shown in Fig. 2a, when regressing PO data the slope b1 was
always lower than 1 (and the most frequent value was sim-
ilar to r?) and the intercept a; was always higher than 0.
Only when the regression was performed with OP data y =
b,y + ay, then b, =1 and a,; =0 (Fig. 2b). This empirical anal-
ysis suggests that regressions to evaluate models should be
performed placing observed values in the ordinates and pre-
dicted values in the abscissas (OP). The same results were
obtained for the quadratic and logarithmic models (data not
shown).

These results can be also demonstrated algebraically. The
slope of the regression of PO values (b1) can be calculated as

Syy
b = =2£ 11
1= Sy (11)

where Syy is the sum of the cross products of centered pre-
dicted and observed values and Syy is the sum of squares of
centered observed values. The slope of the regression of OP
values (by) can be calculated as

Syy
by = 222 12
2= 555 (12)

where Syy is the sum of squares of centered predicted values.
The coefficient of determination of the regression of PO values
(r?) is then:

a2
2 (Syy)
= 1

7 Syy 55 13)

and the coefficient of determination of the regression of OP
values (r2) is

Sjy)?
2o S 14
> S§y Syy (4
thus, the two coefficients of determination are equal, and also
related to by, and b, as

T% = Y% = b1b2 (15)

Considering once more that our vector ¥ was estimated
from the vector X and Egs. (2), (3) or (4), and that because of
that the relation between Y and ¥ is exact, with no distortion
or bias, then each observed value can be defined as prediction
plus a random error (y; = J;+s;). Consequently:

n n

Sy = > i =i - Z(y‘ Wyi=> 0i=9@i+ )

=1 i=1

Z wZ

f=> Gi-9° =S5  (16)

i=1

We demonstrated that Syy = Syy if y; = J;+e;. Thus, we
confirm algebraically that for our experiment b, =1 and that
b1 =r?, founded on Egs. (11), (12) and (15). Consequently, by will
be always smaller than 1 when any ¢; #0. Additionally, since:
ar=y-biy,  ay=F-by (16)
and because by =12, then a; =1 —r? (always >0) when observed
and predicted values have the same mean (model predictions
are not biased). In identical conditions a; =0, because by =1.
However, in real comparisons between observed and predicted
values, by will approximate r? when b, approximates to 1.

The theoretical evidence presented before shows that the
proper slope and y-intercept to compare observed and pre-
dicted values must be calculated only by regressing OP data.
A spurious estimate will be obtained by regressing PO values.
Wrong conclusions on model performance willbe drawn in the
latter case. Eq. (15) also revealed that the differences between
the two slopes calculated will increase as r? decreases. In
addition, in Eq. (8) the error term represents the variation
in the predicted values and residuals are independent of the
observed values. In the second Eq. (9) the residuals are inde-
pendent of the predicted values which are what we want to
evaluate. This line of reasoning adds additional theoretical
basis for using Eq. (9) of OP values instead of Eq. (8) of PO values
in model evaluation.

The reanalysis of the data presented by (White et al., 2000),
showed with real data that slope and intercept vary when
regressing OP values instead of PO values, changing the results
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Fig. 2 - Predicted vs. observed (a) (PO) and observed vs. predicted (b) (OP) regression scatter plots derived from the linear
model presented in Fig. 1a. Regression equations are shown in the graphs. Small graphs show the distribution of slope and
intercept estimates obtained from regressing 100 paired Y and ¥ vectors either as PO (a) and OP (b).

of the analysis. In their paper, White and collaborators used
a simple physiological model for estimating biomass accu-
mulation in New Zealand vegetation. Model predictions were
compared with observed values collected in several studies.
The slope of the regression of PO values of total biomass pre-
sented by the authors in their Fig. 3, differed by 0.40 units from
1, while the slope of regressing OP values differed by only 0.27
units (almost half) (Fig. 3a and b). Looking at the graphs we can
state that the authors probably thought that their model over-
estimated observed data at low values and underestimated it
at high values, thus the slope of the regression was signifi-
cantly different from 1.

Opposite results are obtained when testing the significance
of the intercept and the slope for both regressions. For total
biomass records in White et al. (2000), the intercept and slope
were significantly different from 1 and 0 when regressing

PO data as the authors did (p=0.024 and p=0.0059, respec-
tively), but they were both not significant with the correct
regression of OP values (Table 2). The conclusions of model
evaluation changed completely when exchanging the vari-
ables plotted in each axis. The regression of OP values (Fig. 3b)
showed that the model had a similar bias throughout all
the range of values and that the slope did not differ signifi-
cantly from 1 (Table 2). Theil’s coefficients also showed that
most of the errors in model predictions were due to unex-
plained variance (77%), and not to bias or slope misleading
(Table 2).

The lack of symmetry in the computation of several param-
eters when regressing OP or PO, has been noted by several
authors, but not thoroughly examined (Kobayashi and Salam,
2000; Gauch et al., 2003). Mitchell (1997) writes in page 315:
“Prediction and observation are plotted on a scatter graph. For the
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Fig. 3 - Predicted vs. observed (a) (PO) and observed vs. predicted (b) (OP) regression scatter plots of data from White et al.,
2000. (a) is Fig. 3 presented in White et al. paper’s and (b) is the regression obtained with the same data but changing the
variables from one axis to the other. Note that although r? is the same, regression coefficients (that describe the similarity of

the regression line with the 1:1 line) change notably.

purpose of the arguments set out below it makes little difference
whether predictions or observations are the independent variable on
the x-axis”. Smith and Rose (1995) suggested in page 53 that
Theil’s coefficients and goodness of fit analysis are easy to per-
form when regressing OP values, and “not as straightforward”
to calculate when regressing PO values. Here we have shown
that this last approach is, simply, incorrect.

The validity of r? in regressions of predicted and observed
values has been questioned, because it characterizes the mean
deviation of observed values (placed in the y-axis) from the

Table 2 - Regression parameters and hypothesis testing

for PO or OP regressions, from data presented in White
et al. (2000)

Predicted vs. Observed vs.
observed (PO) predicted (OP)
a 116.9 —65.37
Significance of Test a=0 0.024 0.44
b 0.60 1.27
Significance of Testb=1 0.0059 0.27
Ubias (%)a - 0.11
Uslope (%)a - 0.12
Uerror (%)a = 0.77
RMSD (tons/ha) - 82.6

Theil’s partial inequality coefficients and the root mean squared
deviation (RMSD) are shown when applicable. RMSD estimates the
mean deviation of predicted values respect to the observed ones, in
the same units as the model variable under evaluation.

@ Theil’s coefficients partition the variance of observed values not
explained by the predicted values (called the squared sum of
the predictive error), being: Upiys, the proportion associated with
mean differences between observed and predicted values, Usiope
the proportion associated with the slope of the fitted model and
the 1:1 line, and Uenor the proportion associated with the unex-
plained variance.

regression line (the regression sum of squares divided by the
total sum of squares). It may have little importance to evalu-
ate how much the observed values differ from the regression
line of OP values (Kobayashi and Salam, 2000; Gauch et al,,
2003). However, although the r? can be estimated by dividing
the regression sum of squares by the total sum of squares, it
can be also calculated from Eq. (14). This equation shows that
r? also represents the proportion of the linear covariance of y
and ¥, with respect to the total variance of y and . In this sense,
the r? indicates how much of the linear variation of observed
values (y) is explained by the variation of predicted values (J).
Linearity between observed and predicted values can be tested
following (Smith and Rose, 1995). Thus, the r? of OP values is
a valid parameter that gives important information of model
performance.

Conversely, the root mean squared error (RMSE) a com-
monly used statistic to show model performance (Weiss and
Hays, 2004; Doraiswamy et al., 2005; Lobell et al., 2005), should
not be applied for the regression of OP data, instead the
root mean squared deviation (RMSD) (see Eqg. (10)) should be
reported (Wallach and Goffinet, 1989; Kobayashi and Salam,
2000; Gauch et al.,, 2003). The RMSE is a proxy of the mean
deviation (not exactly the mean because it is squared and
divided by n— 1) of values in the y-axis against the regression
line. When reporting the RMSE for the OP or PO regression,
we are not estimating the mean deviation between estimated
and predicted data. Instead, we are estimating the root mean
squared error of the observed values against the regression
line of observed vs. predicted values (in the case of regress-
ing OP) and the root mean squared error of the predicted
values against the regression line of predicted vs. observed
values (in the case of PO). The correct comparison is to cal-
culate the deviation of each predicted values against the 1:1
line and not against the regression line of either OP or PO.
RMSE will be always smaller than RMSD and thus represents
an underestimation of the real error between observed and
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simulated values. For example, in White’s and collaborators
paper the RMSD was 82.6 tons/ha (Table 2), while the RMSE
changed between the regression of PO and OP values (52.7
and 76.2tons/ha, respectively), and is always smaller than
RMSD.

4, Conclusions

We showed empirically and demonstrated analytically that
model evaluation based on linear regressions should be
done placing the observed values in the y-axis and the pre-
dicted values in the x-axis (OP). Model evaluation based on
the opposite regression leads to incorrect estimates of both
the slope and the y-intercept. Underestimation of the slope
and overestimation of the y-intercept increases as r? values
decrease.

We strongly recommend scientists to evaluate their models
by regressing OP values and to test the significance of slope=1
and intercept=0. This analysis can be complemented by
decomposing the variation of observed values not explained
with the predictions (the squared sum of the predictive error),
through calculating Theil’s partial inequality coefficients (U).
The coefficient of determination r? can be used as a measure
of the proportion of the variance in observed values that is
explained by the predicted values. If replicates of observed
values are available then a goodness of fit test can be per-
formed following (Smith and Rose, 1995). RMSE should not be
reported for the OP regression, but the RMSD adds important
information to model evaluation.
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