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ABSTRACT

We analyzed data sets on phytomass production,
basal cover, and monthly precipitation of a semiarid
grassland in South Africa for good, medium, and
poor rangeland condition (a) to investigate whether
phytomass production per unit of basal cover dif-
fered among rangeland conditions, (b) to quantify
the time scales of a carryover effect from production
in previous months, and (c) to construct predictive
models for monthly phytomass. Finally, we applied
the best models to a 73-year data set of monthly
precipitation data to study the long-term variability
of grassland production. Our results showed that
mean phytomass production per unit of basal cover
did not vary significantly among the rangeland con-
ditions—that is, vegetated patches in degraded
grassland have approximately the same production
as vegetated patches in grassland in good condition.
Consequently, the stark decline in production with
increasing degradation is a first-order effect of re-
duced basal area. Current-year precipitation ac-
counted for 64%, 62%, and 36% of the interannual
variation in phytomass production for good, me-

dium, and poor condition, respectively. We found
that 61%, 68%, and 33%, respectively, of the un-
explained variation is related to a memory index
that combines mean monthly temperature and a
memory of past precipitations. We found a car-
ryover effect in production from the previous 4
years for grassland in good condition and from the
previous 1 or 3S month for grassland in medium
and poor condition. The memory effect amplified
the response of production to changes in precipita-
tion due to alternation of prolonged periods of dry
or wet years/months at the time scale of the mem-
ory. The interannual variability in phytomass pro-
duction per unit basal cover (coefficient of variation
[CV] = 0.42-0.50 for our 73-year prediction, CV =,
0.57-0.71 for the 19-year data) was greater than
the corresponding temporal variability in seasonal
rainfall (CV = 0.29).
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INTRODUCTION

Primary production is a fundamental aspect of eco-
system functioning that sets the energy available for
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other trophic levels (McNaughton and others
1989). For example, both herbivore consumption
and biomass have a strong correlation with primary
production (McNaughton and others 1989; Oester-
held and others 1992). Additionally, primary pro-
duction is a strong regulator of the flow of elements
within the biosphere (Mooney 1991). It is particu-
larly important for the management of semiarid
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ecosystems where rangelands are the main source
of forage for livestock to understand the factors that
control phytomass production.

Significant progress has been made in under-
standing the controls of rangeland primary produc-
tion. Mean aboveground net primary production
(ANPP) of widely different arid and semiarid sys-
tems is strongly correlated with mean annual pre-
cipitation (for example, see Sneva and Hyder 1962;
Noy-Meir 1973; Lauenroth 1979; McNaughton
1985; Le Houérou and others 1988; Sala and others
1988a; Paruelo and others 1999). Additional factors
that control ANPP include temperature (Christie
1981; Epstein and others 1997), evapotranspiration
(Snyman 1998), soil water-holding capacity (Sala
and others 1988a; Epstein and others 1997; Sny-
man 2000), nutrient availability (Chapin 1991; Du
Preez and Snyman 1993), species composition (Mil-
chunas and Lauenroth 1993), grazing (O’Connor
and Roux 1995; Oesterheld and McNaughton
2000), and fire (Oesterheld and McNaughton
2000). Most of these analyses described the controls
of the spatial variability of ANPP. In general, the
relationships of ANPP with environmental variables
were derived from long-term averages for many
sites distributed across environmental gradients
(“spatial models”). Much less is known about the
controls of the temporal, interannual variation of
productivity at a given site (“temporal models”)
(Paruelo and others 1999).

The degradation of semiarid grasslands follows a
general pattern where grazing alters the species
composition from long-lived perennials to annuals
or short-lived perennials (O’Connor and others
2001). Changes in species composition are corre-
lated with a decline in basal cover. Because of lower
cover, larger runoff, and soil and nutrient loss,
overall productivity declines with increasing degra-
dation, a pattern that is widely found in grasslands
(Snyman and Fouché 1991, 1993; Du Preez and
Snyman 1993; Milchunas and Lauenroth 1993;
O’Connor and Roux 1995; O’Connor and Breden-
kamp 1997; Snyman 1998; McNaughton and others
1989; O’Connor and others 2001) and other semi-
arid vegetation types (Danckwerts and Nel 1989;
O’Connor 1994; Hoffman and Ashwell 2001). This
decline in production may be primarily caused by
basal cover decline, and production per unit of basal
cover may not change with degradation. If this null
model is not met, an overproportional decline in
production might be caused by factors such as edge
effects (that is, in more fragmented grasslands,
more tufts are exposed to marginal conditions at the
edges of larger patches of bare ground where micro
conditions are less favorable) and changes in species

composition. The interesting question therefore is
whether or not a reduction in production is propor-
tional to basal cover reduction (that is, the pure
effect of basal cover loss), or if additional “fragmen-
tation” effects give rise to an overproportional loss
in production. The analogous question of the rela-
tive effects of habitat loss and fragmentation for
animal populations has also been a controversial
topic of discussion (for example, see Kareiva and
Wennergren 1995; Fahrig 1997, 2002; Flather and
Bevers 2002).

Memory and carryover effects might play an im-
portant role in the functioning of semiarid range-
lands by buffering fluctuations in phytomass pro-
duction if wet, more productive years alternate
with dry, less productive years and by amplifying
fluctuations if wet or dry sequences of several years
take place (Goward and Prince 1995; Oesterheld
and others 2001). In the past, such carryover effects
have been demonstrated for a few perennial grass-
lands and shrublands (for example, see Paulsen and
Ares 1962; Hanson and others 1982; Smoliak 1986;
Gibbens and Beck 1988; Snyman and Fouché 1991;
Jobbagy and Sala 2000; O’Connor and others 2001;
Oesterheld and others 2001). Determining the time
scale of the memory of rangelands is important not
only for increasing our predictive ability, but also
for enhancing our understanding of how phyto-
mass production (or changes in basal cover) re-
sponds to fluctuations in precipitation. Earlier at-
tempts to investigate carryover and memory effects
considered mostly production from previous years
as additional independent variables in a linear re-
gression model (for example, see Oesterheld and
others 2001; O’Connor and others 2001; but also
see Gibbens and Beck 1988; Goward and Prince
1995; Anderson and Inouye 2001). However, there
is no reason to restrict the memory to an annual
time scale. In short-lived vegetation, it is more
probable that a carryover effect acts on a monthly
time scale, whereas in perennial vegetation it may
act on a yearly, or even longer, time scale. Also,
using production for the previous year as an inde-
pendent variable is impractical for predictive pur-
poses because data on production are usually less
available than precipitation data. We thus propose
to substitute production history with a “memory”
index based on the rainfall history of the site. Our
indices are basically a weighted running mean of
monthly effective precipitation where the weight-
ing factor declines exponentially with time.

The general aim of this study was to obtain an
understanding of factors determining phytomass
production in the semiarid grasslands. We used two
data sets on phytomass production from South Af-
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rica, one comprising monthly production from the
1995-96 growing season to the 1998-99 growing
season and a second one comprising total seasonal
production from the 1977-78 to the 1995-96 grow-
ing season. Both data sets included data for three
rangeland conditions (good, medium, and poor),
monthly rainfall, and annual basal cover. More spe-
cifically, (a) we investigated whether phytomass
production per unit of basal cover differed among
rangeland conditions, or if “fragmentation effects”
or changes in species composition introduced an
over proportional decline in production relative to
basal cover loss; (b) we built indices based on
monthly rainfall and mean monthly temperature to
describe the memory of the grassland; and (c) we
constructed predictive models for monthly phyto-
mass production per unit of basal cover using these
indices. Finally, we applied the best models to a
73-year data set of monthly precipitation data to
study the long-term variability of grassland produc-
tion.

METHODS

Site Description

The short-term monthly production data set was
collected in Bloemfontein (28°50'S, 26°15'E; 1,350
m a.s.l.); the long-term seasonal production data set
was collected on the Sydenham farm of the Univer-
sity of the Free State 15 km southeast of Bloemfon-
tein, South Africa (29°06'S, 26°67'E; 1,350 m
a.s.l.). The long-term precipitation data set was ob-
tained from Glen (28°57'S, 25°20'E; 1,304 m a.s.L.),
approximately 30 km northeast of Bloemfontein.
For the 1975-96 period, the monthly rainfall be-
tween Glen and the Sydenham farm was highly
correlated (r = 0.91, P < 0.001). The study sites are
situated in the semiarid summer rainfall region (an-
nual average, 560 mm) of South Africa within a
Themeda triandra—Cymbopogon plurinodis grassland
ecosystem (Acocks 1953) (plant nomenclature fol-
lows Arnold and De Wet 1993). The soil is a fine
sandy loam of the Valsrivier form (Goedemoed
family—1121) (Soil Classification Working Group
1991) and is representative of the semiarid grass-
land. Rain falls almost exclusively during summer
(October to April), with an average of 78 days of
precipitation per year. Mean maximum monthly
temperature ranges from 17°C in July to 33°C in
January, but extremes of 41°C in January and 28°C
in July have been recorded. On average, frost oc-
curs 119 days per year (Schulze 1979).

Data Collection

In the semiarid grassland ecosystems of South Af-
rica, species composition and basal cover are used to
characterize rangeland condition (O’Connor and
others 2001). Prior to the experiments, three com-
positional states reflecting good, medium, and poor
rangeland condition were created. These three
states closely reflect the distinct composition and
basal cover that could arise as a result of different
grazing histories of this grassland (Mostert 1958;
Van den Berg and others 1975; O’Connor and oth-
ers 2001). Conditions of the long-term experiment
were maintained from 1977-78 to 1995-96; those
of the short-term experiment were maintained
from 1995-96 to 1998-99. The good-condition
grassland was dominated by the perennial bunch-
grass Themeda triandra and had the highest basal
cover; the medium condition grassland was domi-
nated by perennial bunchgrasses of Eragrostis spe-
cies; the poor condition grassland was dominated
by the stoloniferous perennial Tragus koelerioides
and the short-lived bunchgrass Aristida congesta and
had the lowest basal cover. For more details on the
mean percentage contribution to cover of the total
of 14 species present at the study sites, see
O’Connor and others (2001). All species were in-
digenous, perennial C, species.

The experimental layout was a fully randomized
design consisting of three treatments (good, me-
dium, poor condition) and three replicates. The ex-
periments were established on an area that was
initially in good condition and was not grazed dur-
ing the experiment. The good-condition treatment
was left as found. The medium- and poor-condition
treatments were created and maintained by selec-
tively pulling out individual tufts of species that
were not characteristic of that condition, keeping
soil disturbance to a minimum. Few plants had to.
be removed after the first 3 years. Each of the nine
experimental units was 2 X 15 m, with average
slopes of 4% and 3.5% for the long-term and short-
term experiment, respectively. Soil was uniform
across plots. Species composition was determined
by recording the plant nearest to 500 points in each
unit during April using a bridge-point apparatus
(adapted from Levy and Madden 1933). Basal cover
was determined as the percentage strikes of these
points.

In the short-term experiment, monthly accumu-
lated aboveground phytomass production was de-
termined for each experimental unit by clipping a
10-m? plot (that had not been harvested before) to
a height of 30 mm at the end of each month. In the
long-term experiment, the seasonal aboveground
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Table 1. Indices Used for Predicting Monthly Phytomass Production per Unit of Basal Cover

Symbol Formula Meaning

T(m) Temperature index for month m

R(m Precipitation for month m

RT(m) = R(m) T(m) Effective precipitation, the precipitation weighted
by the temperature index

VigR{m, c) VigR(m) = VigR(m—-1)c + R(m-1)(1-c) Precipitation memory index

VigRT(m, c) VigRT(m) = VigRT(m-1)c + RT(m-1)(1-c)  Effective precipitation memory index

SumR(m) = 2L septemperR() Accumulated precipitation from September to month m

SumRT(m) = 2L sememper RE) T(D) Accumulated effective precipitation from September to
month m

SumVR(m, c) = 2L sepemper RUEYVIGR(, ) Accumulated precipitation to month m, weighted by the
precipitation memory index VigR

SumVRT(m, ¢) = 2 seprember RTD VIgRT, ©) Accumulated effective precipitation to month m, weighted

by the effective precipitation memory index VigRT

phytomass production of each experimental unit
was harvested to a height of 30 mm, the effective
stubble height, at the end of the growing season
after the first frost. End-of-season standing crop
may underestimate ANPP because of tissue senes-
cence (Sala and others 1988b).

STATISTICAL ANALYSES

Differences between Compositional States

For analyses of the short-term experiment, we used
the data on monthly phytomass production per unit
of basal cover A(s, y, m) at compositional state s, year
¥, and month m, and the accumulated data from
September up to month m:

m

p(s, y, my= 2,

i=September

h(s, y, 1) (1)

For analyses of the long-term data set, we used
the data on total seasonal phytomass production
per unit of basal cover, p(s, y, April). Note that the
growing season starts in September and ends in
April. Finally, we calculated P(s, y, April), the total
seasonal phytomass production per hectare as:

P(s, y, April) = p(s, y, April) b(s, y) (2)

where b(s, y) is the corresponding basal cover at
state s and year y. To investigate whether phyto-
mass production per unit of basal cover differed
among compositional states, we compared the
means of p(s, y, m) (short-term data) and the means
of p(s, y, April) (Jlong-term data) among composi-
tional states. To investigate whether phytomass
production of grasslands in different compositional

states responds differently to rainfall, we calculated
for the long-term data set the slopes of the linear
relations between total phytomass production per
unit of basal cover and precipitation during the
growing season (total rainfall from September to
April) and tested with a z-test for significant differ-
ences among the slopes.

Indices for Predicting Phytomass Production

To develop predictive models for long-term
monthly phytomass production we hypothesized
indices that summarize the effects of monthly rain-
fall, mean monthly soil temperature, and “mem-
ory” of past rainfall events (Table 1). To obtain the
best model, we built several regression models with
these indices and the data on phytomass production
per unit of basal cover. To relate our approach to
previous analyses (O’Connor and others 2001), we
also constructed models that included production ¢f
the previous year as an additional independent
variable.

In the first step of our analysis, we included pre-
cipitation of month m, R(m), or accumulated pre-
cipitation from September (the beginning of the
growing season) up to month m, SumR(m). In the
next step, we introduced a temperature index,
T(m), scaled to values between 0 and 1, which is
based on monthly average soil temperature taken at
14:00 at 50-mm depth, averaged over the four sea-
sons from 1995-96 to 1998-99—that is, each
month is assigned a set value that is related to its
average relative temperature (Snyman 2000). By
multiplying the temperature index T(m) and pre-
cipitation R(m), we obtained an index of effective
precipitation, because both low temperature and
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Figure 1. Example of effective precipitation memory indices VigRT between 1982 and 1990, plotted together with monthly
precipitation. Dashed line, ¢ = 0.8; solid gray lines ¢ = 0.9; solid black line, ¢ = 0.95.

precipitation constrain phytomass production (for
example, high rainfall during the cold season does
not stimulate much phytomass production because
C, grasses have high temperature optima for pho-
tosynthesis) (Ehleringer and Bjorkman 1977). For
predictions of total phytomass production in the
long-term experiment, we used the accumulated
seasonal rainfall during the growing season (from
September to April), SumR(m = April), or the anal-
ogous index with effective rainfall SumRT(m =
April) (Table 1).

In the final step, we introduced a precipitation
memory index VigR(m, c) for month m with param-
eter ¢ that describes the dependence on past precip-
itation. We used this memory index, analogously to
the temperature index, as a weighting factor for
monthly precipitation R(m) and hypothesized that
the accumulated weighted seasonal rainfall Sum VR
(m = April, ¢) would explain seasonal phytomass
production better than accumulated seasonal rain-
fall SumR (m = April).

We defined the precipitation memory index Vi-
gR(m, c) iteratively as:

VigR(m, ¢) = ¢ VigR(m — 1, ¢) + (1 — ¢) R(m — 1)
(3)

where cis a parameter that ranges between 0 and 1.
VigR is an iterative index because the value from
last month, VigR(m — 1, ¢), is used to calculated the
index for the present month m. Our precipitation
memory index weights precipitation of the last
month with coefficient (1-¢) and the index of the
last month with coefficient ¢ (Eq. [3]). We will
thereafter refer to ¢ as the memory coefficient be-
cause it determines the duration of the memory in
VigR. This can be seen by iterating Eq. (3). With
initial value VigR, at month m = 0, we obtained for
the lst month VigR(1l, ¢) ¢ VigR, + (1-c) R(O);

after iterating m times, the precipitation memory
index yields:

VigR(m, ¢) = VigR«" + (1-¢) [¢"'R(0) + ¢"?R(1)

+ ¢"™3R(2) + ... + R(m-1)] (4)

Equation (4) shows that the initial condition
VigR, contributes with coefficient ¢ to the current
memory index, and that precipitation at month m =
0 contributes with coefficient (1) ¢™~'. Thus, the
memory fades away with time in an exponentially
declining manner (Figure 1). For small values of ¢,
the memory is short. In the extreme case of ¢ = 0,
VigR(m, c) become equal to R(m~1) (Eq. [3]). On the
other hand, for larger values of ¢, the memory per-
sists longer (Figure 1), and in the extreme case of ¢
= | the memory index is constant (Eq. [3]), which
corresponds to an infinite memory where the con-
tribution of the last month is infinitesimally small
(that is, no memory). We obtained an effective
precipitation memory index VigRT (Table 1) analo- -
gously to Eq. (3) by using effective monthly precip-
itation R(m)T(m) instead of monthly precipitation
R(m).

Because the memory indices VigR and VigRT
depend on the initial condition (Eq. [4]), we used
monthly precipitation data for the period 1923 to
1977 to determine the initial values VigR, or Vi-
gRT,. These long-term data were taken from the
weather station in Glen in the vicinity of the sites
where the production data were collected (see
“Application of Our Model to a Long-term Pre-
cipitation Data Set”). We determined the value of
the memory coefficient ¢ indirectly through ad-
justment with our data—that is, we searched the
value of ¢ that maximized the R ? value of the
corresponding regression model.
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Regression Models for Predicting Monthly
Phytomass Production

In the first analysis, we investigated whether
monthly phytomass production was directly related
to monthly (effective) precipitation. This is an im-
portant prerequisite for our memory indices for
predicting seasonal production (Table 1). To test our
model assumption, for each compositional state we
built a linear model with monthly phytomass pro-
duction A(s, y, m) as the dependent variable and
monthly precipitation R(m), or effective monthly
precipitation RT(m), as the independent variable
(“monthly models”). In the next step, we repeated
the same analysis, but with the accumulated pro-
duction up to month m [that is p (s, y, m), as the
dependent variable and accumulated precipitation
up to month m [that is Sum R (m), as the indepen-
dent variable (“accumulative models”). In this step,
we did not introduce indices related to memory
because 4 years of data were not enough to discern
memory effects.

Regression Models for Predicting Long-term
Phytomass Production

For each compositional state, we built three differ-
ent regression models to predict p(y), the long-term
seasonal phytomass production per unit of basal
cover at year y. The first model considers only sea-
sonal rain SumR as an independent variable, the
second model also includes the production for the
last year p(y - 1) (for example, see O’Connor and
others 2001; Oesterheld and others 2001), and the
independent variable of the third model is the index
SumVR (Table 1) that considers our memory index.
The third model contains one unknown parameter,
the memory index ¢ We applied this model for
different values of ¢ and for each compositional
state we determined the value ¢, that maximized
the R ? value. To test our hypothesis that inclusion
of effective precipitation R(m)T(m) instead of pre-
cipitation R(m) will improve performance of our
models, we repeated the three models with the
analogous indices based on effective precipitation
(that is, SumRT instead of SumR, and SumVRT in-
stead of SumVR).

Evaluation of the Long-term Model with the
Short-term Data

We evaluated the model for long-term phytomass
production using the short-term data set. To this
end, we determined the indices (that is, SumVR or
SumVRT) and the memory coefficients ¢, that
yielded the best fit of our long-term data. Next, we
built the corresponding accumulative models with

the data from the short-term experiment and com-
pared the regression coefficients between corre-
sponding models. With this procedure, we tested
whether or not the regression coefficients of our
best models were independent of the specific time
period chosen to calibrate the model.

Application of Our Model to a Long-term
Precipitation Data Set

Some important aspects of ecosystem functioning
in arid and semiarid areas can only be examined
properly by using long-term data. These issues in-
clude the relationship between rainfall variability
and primary production, and how this relationship
changes among compositional states. Using a 73-
year time series of monthly precipitation data from
Glen in the vicinity of the sites where the produc-
tion data were collected, we predicted monthly
phytomass production per unit of basal cover using
our best models. We were able to use the rainfall
data set from Glen to extrapolate our model on
phytomass production because the monthly rainfall
between Glen and the Sydenham farm was highly
correlated (r = 0.91, P < 0.001) for the 1975-96
period where both data sets overlap. We calculated
descriptive statistics of the precipitation data set and
the resulting long-term predictions for phytomass
production per unit of basal cover in the three com-
positional states. Finally, we compared the resulting
frequency distribution of the predicted total phyto-
mass production among the compositional states.

REsuLTS

Differences among the Compositional States

Mean phytomass production per unit of basal cover
varied little among the compositional states but
showed a tendency to decline from good to medium
to poor condition (Table 2). Variations between
months (short-term series) and years (long-term
series) were much larger than differences berween
compositional states (Table 2). Consequently, for
the short-term series, the t-test for equality of
means yielded P values 0f 0.151, 0.026, and 0.37 for
differences between good and medium, good and
poor, and medium and poor, respectively. For the

. long-term series, it yielded P values of 0.074, 0.216,

and 0.632 for differences between good and me-
dium, good and poor, and medium and poor, re-
spectively. Thus, we detected significant differences
in mean phytomass production per unit of basal
cover only for the short-term series between the
good and poor conditions. For the long-term exper-
iment, the linear relations between annual phyto-
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Table 2. Descriptive Statistics for Phytomass Production per Unit of Basal Cover for the Different

Compositional States

Condition Mean Std Dev CV

Minimum

Maximum No. Cases Mean Basal Cover (%)

Monthly phytomass production per unit of basal cover from 1995-96 to 1998-99

Good 30.9 30.0 0.97 -1.1 111.1 96° 8.3

Medium 25.2 24.8 0.98 -11.4 96.0 96 6.4

Poor 21.9 25.6 1.17 -13.9 101.0 96° 2.9
Yearly phytomass production per unit of basal cover from 1985-86 to 1995-96

Good 147.9 83.8 0.57 41.6 347.6 57° 8.6

Medium 119.7 81.2 0.68 24.9 352.3 57° 6.5

Poor 127.4 89.9 0.71 4.4 350.7 57° 3.1

Units for phytomass production per unit of basal cover are kg ha™" per unit of basal cover.
! ) P ¢ P

YEight months, 4 years, and three replicates
"Nineteen years and three replicates

mass production per unit of basal cover [p(s, y,
April)] and precipitation during the growing season
[SumR(April)] vielded slopes (£SE) of 0.39 (%
0.04), 0.37 (* 0.04), and 0.32 (* 0.06) kg ha™"
mm~ ' per unit basal cover for good-, medium-, and
poor-condition grassland, respectively. The slopes
were significantly different from zero and did not
differ significantly among compositional states, in-
dicating that the long-term response of phytomass
production per unit of basal cover to precipitation
did not differ significantly among compositional
states. However, because of the stark differences in
basal cover among compositional states (Table 2),
there were significant differences among total sea-
sonal phytomass production per hectare among
compositional states (O’Connor and others 2001).
This indicates that loss of basal cover was the main
mechanism responsible for the decline in total phy-
tomass production with increasing degradation.

Predicting Monthly Phytomass Production

In all cases, except for the poor-condition scenario,
we found a highly significant linear relation be-
tween monthly (effective) precipitation and
monthly production per unit basal cover (P <
0.001). For the good condition, R ? = 0.51 [with
R(m)] and R % = 0.57 [with RT(m)]; for the medium
condition, R 2 = 0.41 [with R(m)] and R * = 0.45
[with RT(m)]; but for the poor condition, R* = 0.09
[with R(m)] and R ? = 0.12 [with RT(m)]. Including
the effective precipitation index improved the
model performance in all cases.

For the accumulated data, the models improved
considerably because accumulating evened out
monthly noise and the marked seasonal pattern.
For the good condition, R* = 0.93 [with R(m)] and
R* = 0.94 [with RT(m)]; for the medium condition,

R? = 0.93 [with R(m)] and R? = 0.92 [with RT(m)];
whereas for the poor condition, R> = 0.87 [with
R(m)]} and R*> = 0.85 [with RT(m)].

Predicting Long-term Phytomass Production

Figure 2 summarizes the results of our analyses of
the long-term data set. We varied the memory co-
efficient ¢ over its entire range (0 = ¢ = 1) and
determined the R? value of the linear regressions for
the three compositional states and for the two cases
with and without effective rainfall. Note that mod-
els without memory (that is, the indices SumR and
SumRT) correspond to the case ¢ = 1 (Eq. [3]). For
each of these six models, we determined the value
of the memory coefficient ¢ indirectly by maximiz-
ing R*. Considering effective rainfall (that is, the
index SumRT instead of SumR) improved the regres-
sion models in all cases considerably; for the best
models, R? increased 13% for the good condition,
19% for the medium condition, and 13% for the
poor condition (Figure 2 and Table 3). Including”
memory (that is, ¢ < 1) improved the regression
models additionally by some 9% for the good con-
dition and 7% for the medium and poor condition
(Table 3 and Figure 2). The memory of the good
condition was long-lasting (¢,.,; = 0.95) (Figure 2);
after 4 years (48 months), the coefficient ¢*® of the
memory dropped below 10%. In contrast, the
memory of the medium condition (¢, = 0.4) (Fig-
ure 2) comprised only one season, after 3 months
the coefficient ¢ of the memory dropped below
10%, and the memory of the poor condition (¢,. =
0.1) (Figure 2) was even shorter; after 1 month the
coefficient ¢' of the memory dropped to 10%.

Our best models explained 86%, 88%, and 57%
of the variation in production for the good, me-
dium, and poor conditions, respectively (Figure 3).
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Figure 2. Analysis of the long-term data set. The x-axis shows the memory coefficient ¢ and the y-axis the Rad‘jz value of
the linear regressions with seasonal phytomass production per unit of basal cover as the dependent variable and the
independent variable SumVRT(m = April, ¢) (open symbols) or SumVR (m = April, ¢) (black symbols). Circles indicate results
for the good-condition state; square symbols, medium; triangles, poor. Note that the models for ¢ = 1 correspond to the
case without memory because the memory indices are constant in this case.

The fit for the poor condition is relatively low,
mainly due to outliers in the 1994-95 season with
high production (Figure 3C). After removing the
outlier for 1994-95, our model explained 79% of
the variation in production. The 1994-95 growing
season was a dry season with only 366 mm precip-
itation (the average seasonal precipitation from
1973-74 to 1999-2000 was 531 mm), which fol-
lowed a wet season with 843 mm precipitation.
To test the effectiveness of the memory models
based on precipitation history, we built regression
models with the two independent variables accu-
mulated seasonal (effective) precipitation SumR
(SumRT ) and production for the last year p(y - 1)
instead of the models with a single independent
variable SumVR (or SumVRT) that considered mem-
ory. Production for the last year did not improve the
regression models for the three states by more that
1% (Table 3). This result indicates that the index
SumVRT effectively described the effects of precipi-
tation, temperature, and memory on production.

Evaluation of the Long-term Model with the
Short-term Data

The three models constructed with the short-term
data set were in agreement with the corresponding
models for the long-term data set; the variation in
the coefficients b was fully within the range given
by the standard error of the coefficients (Table 4),

and the intercepts a were small. Thus, we found
that 4 years of data on monthly phytomass produc-
tion are enough to calibrate a model for long-term
phytomass production with sufficient precision for
this environment. Prerequisite, however, is that the
memory coefficient ¢, is known. Figure 4 shows,
exemplarily for the good condition state, the pre-
dicted values of accumulated monthly phytomass
per unit basal cover and the data from the short-
term and long-term experiments.

Because the regression coefficients are practically
identical, we cannot detect an underestimation of
ANPP (the accumulated monthly production of the
short-term experiment) when measuring end-of-
season standing crop (the data of the long-term
experiment) that may arise because of tissue senes-
cence {O’Connor and others 2001).

Application of Our Model to a Long-term
Precipitation Data Set

The seasonal precipitation SumR(April) between
1922 and 1995 averaged 513.1 mm (SD = 149.7
mm, CV = 0.29), and the effective seasonal precip-
itation SumRT(April) averaged 376.5 mm (SD =
109.6 mm, CV = 0.29). As expected, the mean
predicted phytomass production per unit of basal
cover was highly variable among years (Figure 5). It
averaged 175, 131, and 138 kg/ha per unit of basal
cover for the good, medium, and poor conditions,
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Table 3. Comparison of Different Regression Models for Predicting p(y), the Long-term Seasonal
Phytomass Production per Unit of Basal Cover

Regression Coefficients

Regression Model R?,4 a+SE b+ SE d * SE

Good
p(y) = a + b SumR* 0.64 —44%% x 2] 0.39*** + (.04 —
py) = a + b SumR + d p(y-1) 0.76 —112%* * 21 0.42%** + 0.03 0.39%** + 0.07
p(y) = a + b SumVR(cpo, = 0.95)° 0.78 -37* + 15 0.87*%* + 0.06 —
p(y) = a + b SumRT 0.77 -58** * 16 0.58*** + 0.04 —
p(y) = a + b SumRT + d p(y-1) 0.87 —113%** + 15 0.61*** = 0.03 0.32*** & 0.05
ply) = a + b SumVRT(c,m= 0.95)° 0.86 -26% * 11 1.67*** *+ 0.09 —-

Medium
p(y) = a + b SumR® 0.62 ~65% = 21 0.37*** *+ (.04 —
p(y) = a + b SumR + d p(y-1) 0.65 —86*** *+ 23 0.38*** + (.04 0.18* *+ 0.08
p(y) = a + b SumVR(c,,, = 0.4)° 0.80 -15*9 0.39%** + 0.03 —
p(y) = a + b SumRT" 0.81 ~86%** *+ 15 0.58%** + 0.04 —
p(y) = a + b SumRT + d p(y-1) 0.82 ~100%** + 16 0.58*** * 0.04 0.14* * 0.06
p(y) = a + b SumVRT(c,,, = 0.4)° 0.88 19%* = 7 0.62%** *+ 0.03 —

Poor
p(y) = a + b Sumk® 0.36 -27 * 30 0.32%** + 0.06 —
p(y) = a + b SumR + d p(y-1) 0.46 —64* * 30 0.31*** + 0.05 0.33** + 0,10
p(y) = a + b SumVR(c = 0.2)° 0.51 38* £ 15 0.31%** + 0.04 —
p(y) = a + b SumRT® 0.49 -50 * 26 0.51*** + 0.07 —
p(y) = a + b SumRT + d p(y-1) 0.56 ~75% * 26 0.48*%* * 0.07 0.27* * 0.09
p(y) = a + b SUumVRT (¢ = 0.1)° 0.57 41% *+ 14 0.48%** + 0.06 —

Independent variables were the (effective) seasonal rain SumR (SumRT), the production for the last year p(y~1), and SumVR (SumVRT), the accumulated (effective) seasonal
rain weighted with the (effective) precipitation memory index. .

In February 1988, abnormally high rainfall occurred (475 mm, = or 85% of the long-term annual average). Because much of it was lost as runoff, we used a lower value
(300 mm) for our analysis. For regression models with SumVR and SumVRT as an independent variable, we determined the value of the memory coefficient ¢ indirectly by
selecting the value of ¢ that maximized the R? value.

Boldface indicates the best models constructed with a memory index.

*P < (.05

**P < 0.005

P < (.0005

“The models were constructed with only 18 years of data (the 1st year was excluded) to make the m comparable to the models where production of the last year p(y~1) entered,
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Figure 3. The best regression models p(y) = a + b SumVRT(c,.,) predicting seasonal phytomass production per unit of basal
cover with memory coefficients ¢ = 0.95, 0.4, and 0.1 for the good (A), medium (B), and poor conditions (C), respectively.
The open circles show the data for all three replicates; the solid lines show the best regression models. After removal of the
outliers (black dots, 1994—-95 growing season) the model for the poor condition [y = 0.51*SumVRT(c = 0.1) + 22.1, dashed
line] explained 79% of the variation in production. The very dry 1994-95 growing season followed a very wet season.
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Table 4. Evaluation of the Long-term Models with the Short-term Data Set

Condition
Good Medium Poor
Cpest 0.95 0.40 0.10

Long-term R?.4 0.86 0.88 0.57
Short-term’ R2adj 0.96 0.86 0.79
Long-term a -26.5 * 10.9 19.3* £ 6.6 40.8* = 13.5
Short-term a, 5.8 £ 3.6 43.5%* + 4] 37.3%%% £ 4 3%4x
Long-term b 1.67*** + 0.09 0.62%** £ 0.03 0.48*** + 0.06
Short-term b 1.73*** + (.04 0.64*** £ 0.03 0.43%** + 0.02

If the regression coefficients of the best models constructed with the long-term data set (Table 3) are independent of the specific time period chosen, the corresponding models
p(s. y. m) = a;, + b SumVRT(C,.,, m) constructed with the short-term data set and memory coefficient ¢y yield the same regression coefficients (that is, a, = a, and b, =

b).

Given are the R? ,; values of the regressions and the regression coefficients = SE for the corresponding models for the long-term and the short-term data sets.

*HEP < 0.0001

P < 0,001
*P < 0.01
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Figure 4. Predicted accumulated monthly phytomass production per unit of basal cover (solid lines with small black dots,
monthly values) for the good condition and field data on phytomass production (open circles). For the short-term
experiment (1995-96 to 1998-99), we show the monthly accumulated data.

respectively, and yielded CV of 0.43, 0.51, and 0.43,
respectively. Thus, the variability in annual pre-
dicted production was some 50%-70% greater than
the corresponding variability in annual rainfall. For
the data from the long-term experiment, we ob-
tained slightly higher figures—CV = 0.57, 0.68, and
0.71, for the good, medium, and poor conditions,
respectively (Table 2).

To understand why the variability in (predicted)
production was higher than the variability in effec-
tive precipitation, we investigated the autocorrela-
tion structure of effective precipitation at the yearly
scale (that is, the correlation between SumRT at lags
of 1-15 years) and at the monthly scale (that is, the
correlation between RT(m) at a lag of I month, but
only taken during the growing season). Effective
seasonal precipitation over 73 years was (weakly)

positively correlated at a lag of 1 year (r = 0.18, P =
0.108) and significantly negatively correlated at lags
of 9 years (r = -0.27, P = 0.021), 10 years (r =
-0.49, P < 0.001), and 11 years (r = -0.35, P =
0.003). This result indicates that there are 10-year
cycles of alternating periods of wet and dry years
(Figure 5). Monthly effective precipitation during
the growing season was significantly positively cor-
related at a lag of 1 month (r = 0.15, P = 0.001, n
= 524). Thus, at the yearly scale, prolonged periods
of wet and dry years alternated, and the memory
index VigRT was above mean during periods of wet
years and below mean during periods of dry years.
This caused predicted phytomass production to in-
crease during a period of wet years and to drop
during a period of dry years. A similar mechanism
was true for the short-lasting memory because of
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Figure 5. Extrapolation of our best models for phytomass production per unit of basal cover (Table 3) on a 73-year
long-term precipitation data series from the same area. The predictions for the good condition are indicated by gray circles;
the long-term average is given as a solid line. The predictions for the medium condition are indicated by open squares; the
long-term average is given as a dashed line. The bottom of the figure shows the effective accumulated seasonal
precipitation SumRT(April); the dashed horizontal shows its average.

the positive correlation of monthly effective precip-
itation at a lag of 1 month; the memory index VigRT
was high after consecutive months of high effective
rainfall (see Figure 1), which amplified the variabil-
ity in the predictive production.

Calculation of the frequency distribution of the
predicted total seasonal production (we multiplied
the prediction for seasonal phytomass production
per unit of basal cover with the average basal cover
8.6%, 7.5%, and 3.1% for good, medium, and
poor, respectively) showed the stark impact of com-
positional state on production (Figure 6). Although
seasonal production in the good-condition state
dropped only in 6% of all years below 700 kg/ha, it
was 49% for the medium condition and 90% for
the poor condition. In only 10% of all years, the
predicted production of medium-condition grass-
land exceeded the average predicted production of
that in good condition (1,500 kg/ha); in only 6% of
all years, poor-condition grassland reached half of
the average of the good condition.

DISCUSSION

Most of our knowledge about the controls and tem-
poral variability of grassland primary production
concerns an annual time scale (Lauenroth 1979;
Sala and others 1988a; McNaughton and others
1993; Epstein and others 1997; Paruelo and others
1999). Because we were working with a model that
operated on a monthly basis, and we were using
both monthly and yearly data on phytomass pro-
duction, our study provides new insights into the
characteristics and environmental controls of car-
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Figure 6. Frequency distribution of predicted total sea-
sonal phytomass production for the three compositional
states based on the 73-year long-term precipitation data
set and our best models (Table 3). To obtain total seasonal
phytomass production, we multiplied the prediction per
unit of basal cover by the average basal cover of the
long-term data set (Table 2).

bon gains in grassland areas. Our analysis of two
phytomass production data sets of South Africa
semiarid grasslands suggests that (a) mean phyto-
mass production per unit of basal cover varies little
between compositional states but shows a trend to
decrease with declining condition; (b) the system
has a memory of past precipitation; (c) the memory
causes carryover effects in production from the pre-
vious 4 years if the grassland is in good condition
(dominated by perennial T. triandra) and effects
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from the previous 1 or 3 months if the grassland is
in medium or poor condition (dominated by short-
er-lived grasses); (d) the memory effect both buffers
and amplifies the responses of production to
changes in precipitation, depending on the se-
quence of dry or wet years/month; and (e) phyto-
mass production in the South African grassland
amplifies the variability in seasonal rainfall. The
latter result is consistent with many previous stud-
ies of arid and semiarid ecosystems (Le Houérou
and others 1988), but it is contrary to findings in
some grassland and shrubland systems (for exam-
ple, Lauenroth and Sala 1992; Paruelo and others
1998) where variability in phytomass production
was smaller than that of rainfall.

Phytomass Production Relative to Basal
Area

Clearly, reduction in basal cover will reduce phyto-
mass production. Bare soil evaporation, runoff, soil
erosion, and nutrient losses will increase as total
cover decreases. A change in the spatial pattern of a
grassland—that is, fragmentation and clumping of
patches (Aguiar and Sala 1999; Reynolds and others
1999) resulting from degradation—may result in
either increases or decreases in phytomass produc-
tion/basal cover. A reduction may result from “edge
effects” in the degraded, more fragmented grassland
(for example, a larger proportion of the tufts suffer
a harsher microclimate at the edge of bare soil
patches) or because species adapted to harsher en-
vironments are less productive than species adapted
to good conditions. An increase will result from a
concentration of resources in the remaining clumps
of vegetation (“fertility islands,” per Whitford
1995). All these processes may operate simulta-
neously, and the observed patterns will result from
the relative contribution of the different processes.
However, our results suggest that the net effect of
these processes cancel, such that net production
depends primarily upon percentage basal cover of
grasses.

The Memory of the Grassland

Our results showed that there are linear relation-
ships between monthly phytomass production and
the product of monthly precipitation (R), a temper-
ature index (T), and a precipitation memory index
(VigRT ). Thus, the memory index acts as a weight-
ing factor that amplifies or reduces production ac-
cording to the precipitation history and describes
the ability of the grassland to respond to a given
monthly precipitation. The advantage of our ap-
proach is that it relies, without loosing explanative

power, only on rainfall data (and average long-term
monthly temperatures) and not on production of
the past years. Our model can therefore be widely
applied if monthly long-term precipitation data
(and average monthly temperature data) are avail-
able. We used the memory index as a weighting
factor for monthly precipitation. In this, our con-
ceptual model on phytomass production (that is,
the indices SumVR and SumVRT) differs from sim-
ilar approaches (for example, Gibbens and Beck
1988; Goward and Prince 1995; Anderson and In-
ouye 2001) that related phytomass production (or
basal cover) directly to a memory index o of the
general form:

c=bo,+ b0+ ..+ by, (5)

where o, gives the environmental effect on vegeta-
tion in time Step £ ¢ is the current time step (£ - 1 is
the previous time step, and so on), and b; are the
individual time step weights (Goward and Prince
1995). The general memory index in Eq. (5) covers,
as special cases, antecedent precipitation from the
last m time steps (for example, see Gibbens and
Beck 1988), precipitation in a previous year (that is,
lag effects) (Anderson and Inouye 2001), as well as
our memory index (Eq. [4]).

We hypothesized that using effective precipita-
tion instead of precipitation would improve the per-
formance of our models for predicting phytomass
production. For the summer rainfall grassland stud-
ied here, we assumed a simple model for effective
precipitation by weighting precipitation with a tem-
perature index that accounts for the high tempera-
ture optima of C, grasses for photosynthesis. Our
results supported this hypothesis (see Figure 2). The
percentage of variation in production per unit of
basal cover explained by the best models increased
by 13%-19%. Note that our simple model for ef-
fective precipitation does not consider the effect of
temperature on soil water availability, which would
require a water balance model to obtain actual
evapotranspiration. We did not include a water bal-
ance model because we intended to keep our model
simple. Our model for effective precipitation im-
proved the predictions for production considerably
(Table 3 and Figure 2), and a small possible im-
provement in predictive ability does not justify the
use of a more complex approach. The use of

. monthly temperature data instead of the long-term

averages, however, may generate the need to cal-
culate actual evapotranspiration or to include a
nonlinear effect of temperature (a saturation func-
tion instead of a multiplicative effect) because very
high temperatures may reduce water availability
due to soil evaporation and reduce monthly precip-
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itation use efficiency. In other semiarid grasslands,
analogous models for effective precipitation (or “bi-
ologically usable” water) might be different and
require the inclusion of actual evapotranspiration,
depending, for example, on the physiological char-
acteristics of the grass species and the climatic char-
acteristics of the site (for example, winter rainfall
versus summer rainfall).

Weighting effective precipitation (RT) with the
effective precipitation memory index (VigRT ) fur-
ther increased the percentage of the explained vari-
ation in production from 77 % to 86 %, from 81% to
88%, and from 49% to 57% for the good, medium,
and poor conditions, respectively (Table 3). With-
out considering the temperature index, the effect of
including the memory index was larger (Table 3).
Both temperature and memory dampen the effect
ol exceptionally high precipitation events outside
the growing season. The damping effect of the
memory index was associated with the low fre-
quency of 2 successive months with high precipita-
tion outside the growing season. The temperature
index damping effect was associated with the effect
of low temperatures on plant growth.

The use of a model that operated at a monthly
basis allowed us to identify the time scale of the
memory, and this represents an important gain
over previous attempts (but see Gibbens and Beck
1988). We found that the grassland in good condi-
tion, which is dominated by perennial T. triandra,
has a memory that lasts up to 4 years, whereas the
memory of the grasslands in medium and poor
conditions, which are dominated by shorter-lived
and annual grass species, lasts for only 1 or 3
months. However, for the medium and poor con-
ditions, we found two maxima in the ~R? plot
(Figure 2), a local maximum for a long-lasting
memory, and an absolute maximum at the short-
lasting memory. This pattern is explained by the
fact that a given compositional state comprises sev-
eral species, and the medium-condition grassland
still retains some long-lived climax perennials. One
of the dominant species in the poor-condition grass-
land, T. koelerioides, is a stoloniferous perennial that
lives about 4 years and that could account for the
long-term memory of the poor condition, whereas
other dominant species, such as the annual A. con-
gesta, might account for the dominant short-term
memory.

Carryover effects can be related to “soil memory,”
“population dynamics memory,” or “plant mem-
ory.” In some systems, the soil acts as a “capacitor,”
and water from one year is transferred to the next
one. In other systems, features of plant population
dynamics (for example, initiation of buds in the

previous growing season, a seed bank, establish-
ment of a cohort of perennial plants) (Goward and
Prince 1995), or plant structural factors related to
changes in biomass, storage organs, or cover (for
example, see Gibbens and Beck 1988; Anderson
and Inouye 2001) may explain the memory of the
system. By analyzing phytomass per unit of basal
cover instead of phytomass, we excluded the po-
tential memory in basal cover that may be caused
by a combination of recruitment pulses and the
perennial lifespan of grasses. Such an effect was
observed by Gibbens and Beck (1988). They deter-
mined the memory of grasslands in southern New
Mexico, USA, on a monthly scale by maximizing
the R? of linear regressions relating total perennial
grass basal area to accumulated precipitation from
the preceding months. Gibbens and Beck (1988)
found that 3-4 years of antecedent precipitation
was significantly associated with perennial grass
basal area.

By repeating the analysis of Gibbens and Beck
(1988), we found similar results. For grassland in
good and medium condition, basal cover was most
strongly related to 6 years of antecedent effective
precipitation (R* = 0.57 and 0.42 for the good and
medium conditions, respectively). Grassland in
poor condition showed two maxima, one for 28
months (R? = 0.29) and another for 4 months (R* =
0.24). However, the analogous analysis with our
memory indices SumVRT instead of antecedent ef-
fective precipitation yielded much poorer fits (R <
0.22 for all three compositional states).

This result indicates that different memory mech-
anisms may operate for phytomass production per
unit basal cover and for basal cover and that an
adequate description of them may require different
indices. Some studies reported lag effects in the
responses of species or functional group cover to
precipitation patterns. For example, by analyzing a
45-year data set, Anderson and Inouye (2001)
found that total cover (or cover of shrubs or peren-
nial grasses) of a sagebrush steppe in Idaho, USA,
did not correlate with precipitation received in the
year preceding the sample year, but rather with
precipitation received from 3 to 5 years earlier.
Similar lags were reported for arid shrublands in
south Australia by Noble (1977), who attributed the
long carryover effects of some species to shoot lon-
gevity.

A possible explanation for our finding of a peren-
nial memory of grassland in good condition regard-
ing phytomass production is that the dominant spe-
cies T. triandra, which has deeper roots than the
dominant species in the other compositional states
(Smyman 2000), can access water from deeper soil
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layers that has been stored in past months. Al-
though more than 80% of the root mass of peren-
nial grasses was found in the top 150-200-mm soil
layer (Snyman 2000) and this mass is primarily
responsible for production, the importance of the
contribution of deeper roots to the survival of plants
during water stress must not be underestimated
(Snyman 2000). Climax grasses are known to with-
draw water from layers deeper than 2 m during
drought periods (Snyman 1994). In contrast, short-
er-lived species with shallow root systems only
have access to water in higher soil layers, which is
stored from only a few months earlier (see Snyman
2000).

Using a 52-year record of phytomass production
at a shortgrass steppe site in north central Colorado,
USA, a site with a mean annual precipitation of 321
mm, Oesterheld and others (2001) found a signifi-
cant carryover effect from the previous year’s pro-
duction. However, they speculated that this was
unlikely to be due to soil water storage. Rather, it
was probably due to structural or functional mech-
anisms produced by drought, which might have
hampered the ability of the system to respond to the
reestablishment of average or wet production con-
ditions.

Variation in Annual Production versus
Variation in Precipitation

Despite the importance of data on year-to-year
variation in functional aspects of ecosystems, they
are extremely limited (Mooney 1991; Knapp and
Smith 2001; Jobbagy and others 2002; Veron and
others 2002).An important open question in this
respect is how the temporal variability in climate
affects the variability of ecosystem processes in
grassland and shrubland areas?

We found a pattern in production versus precip-
itation variability (the CV of phytomass production
is higher than that of rainfall) that is consistent with
many studies in arid and semiarid ecosystems (for
example, Le Houérou and others 1988). We iden-
tified a mechanism that acts -as a memory of past
precipitations and can inflate the variability in rain-
fall. More specifically, this mechanism was caused
by a positive correlation of precipitation at the scale
of the memory of the grassland that amplified the
variability in precipitation: Production was higher
during a sequence of several wet years or months
and lower during a sequence of several dry years or
months. This mechanism could explain the contra-
dictory results of other studies in South and North
America (Fernandez and others 1991; Lauenroth
and Sala 1992; Paruelo and others 1998) in which
the CV of production was smaller than that of pre-

cipitation. At the shortgrass steppe, which has a
memory at an annual scale (Oesterheld and others
2001), - precipitation is only rarely consistently
above or below the mean for more than 2 or 3 years
(Lauenroth and Sala 1992). In areas whete there
are no prolonged periods of dry and wet years, a dry
year after a wet year will yield more production
than expected by precipitation alone, and a wet
year after a dry year will yield less production than
expected by precipitation alone —a pattern that will
buffer the variability in precipitation. Using satellite
data, Paruelo and others (2000) showed that the
relative variability of phytomass production is
highly dependent on the spatial scale. The CV de-
creased exponentially as the size of the experimen-
tal plots increased. Differences in the size of the
experimental plots between the earlier studies and
our analysis may account for part of the differences
in the results.
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