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5.1

Introduction

The Normalized Difference Vegetation Index (NDVI), derived from the red and infra-
red bands of the AVHRR on-board sensor of NOAA satellites, ShoWS a high correla-
tion with biophysical rates of the target area, such as transpiration or primary pro-
ductivity {Sellers et al.1992). NDVI has been shown to be a linear estimator of the frac-
tion of the photosynthetic active radiation (PAR) absorbed by the canopy (Potter et al.
1993; Ruimy et al. 1994). Monteith {1981) showed that the amount of PAR absorbed
throughout the growing season is the major control of net primary production. NDVI
data also allows the tracking of intra-annual changes in carbon gains {Lloyd 1990;
Paruelo and Lauenroth 1995).

NDVI has also been shown to be strongly correlated to the Aboveground Net Pri-
mary Production {ANPP) in grassland and shrubland areas {Thcker et al. 1985; BoX et al.
1989; Prince 1991a; Prince 1991b; Burke et al.1991; Paruelo et al.1997).ANPP, the rate of
carbon accumulation in plants, is a key attribute of the ecosystem. It represents the
amount of energy available to the upper trophic levels and integrates manyimportant
functional characteristics such as nutrient cycling, secondary production {McNaughton
et al.1989), and root biomass and soil organic carbon dynamics (Sala et al.1997). The
importance of ANPP is also related to applied reasons. For example, ANPP is the ma-
jor control of forage availability for both domestic and wild herbivores in grasslands,
savannahs and shrublands {Oesterheld et al.1992; MacNaughton et al.1993; Oesterheld
et al. 1998). The understanding of the environmental controls of ANPP and the pre-
diction of future values is, therefore, a crucial issue for both theoretical and applied
ecologists. The development of predictive models of ANPP is clearly restricted by the
availability of long-term data sets. The reason behind the lack of extensive databases
is quite simple: estimation of ANPP is time-consuming, and therefore expensive
{Lauenroth et al. 1986; Sala et al. 1988).

NDVI has been proved to be a reliable alternative in cases where long records for
ANPP are unavailable {Paruelo et al. 1997). Several agencies have compiled and repro-
cessed original data to produce global databases of NDVI images at a spatial resolution
of 8 x 8 km {i.e. James and Kalluri 1994; Tucker and Newcomb 1994). The NOAA/NASA

EOS AVHRR Pathfinder data set include 36 images per year for the period 1981-1994.
This database is specially suited to analysing the temporal dynamics of ANPP.

Southern Argentina is dominated by temperate, arid and semiarid steppes and
semideserts {Soriano 1983; León et al.1998). The design of sustainable systems for this
area clearly depends on a better understanding of the structure and functioning of
main ecosystems of the region {Soriano and Paruelo 1990 ). This area is characterized
by scarce and variable precipitation, ranging from 700 mm toward the western edge
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of the region, to 150 mm in the centre of the area (Jobbagy et al.1995). Most of the re-

gion is influenced by Pacific air masses (Prohaska 1976). The Pacific influence deter-
mines a clear concentration of precipitation during winter months. Thearea domi-

nated by Pacific air masses corresponds to the Patagonian Phytogeographical Prov-
ince (Paruelo et al. 1991). The north-eastern part of the region is also influenced by

Atlantic air masses, which determine a more even distribution of precipitation (Paruelo
et al.1998). This area corresponds to the Monte Phytogeographical Province (León et al.,
1998) and is covered by steppes dominated by evergreen shrubs of the genus Larrea.

Desertification has been a major concern for the scientific community, federal agen-
cies and environmental groups for more than two decades (Soriano and Movia 1987).
Sheep have grazed native vegetation since the beginning of the century (Soriano and

Paruelo 1990). Grazing is blamed as the major determinant ofvegetation degradation
across the area (León and Aguiar 1985; Perelman et al. 1997). Aguiar et al. (1996) have

showed, using simulation models, the impact of the structural changes associated to

overgrazing on ecosystem functioning.
Jobbágy et al. (1999) have analysed long-term NDVI data for the Patagonia steppes

using regression models. Even though regression models resulted in valuable tools to

understand the system, they showed a low predictive power. A better knowledge of
temporal dynamics of NDVI is advantageous in the management of natural resources.
Predictive models of NDVI may also provide the basis for the development of"warn-
ing systems" for Patagonian rangelands. The objective of this paper is to investigate
the temporal dynamics of the NDVI and its internal and external controls across north-
ern Patagonia by using ANNs. We also explore the use of ANNs as predictive tools of

the intra-annual dynamics of the NDVI.

5.2

Methodology

5.2.1

Artificial Neuronal Networks

Applications of ANNs to ecological and environmental problems have started early
this decade, mainly through the use of feed-forward multilayer networks. Some ex-
amples are classification of remotely sensed data (Liu and Xiao 1991; Kanellopoulos
et al. 1992; Foody et al. 1995), resource management (Gimblett and BalI1995), ecosys-
tems modelling (Lek et al. 1996j Recknagel et al. 1997j Paruelo and TomaseI1997),
weather forecasting (McCann 1992; Derr and Slutz 1994), prediction of daily solar ra-
diation (Elizondo et al. 1994), and many others. In particular, there has been a clear
interest in using ANNs for nonlinear prediction of time series. One of the most im-
pressive results has been shown by Wan in the prediction of a chaotic time series
through the use of a finite-duration impulse response (FIR) multilayer perceptron (Wan
1994). Although many of these ANNs are able to make very good predictions, training
is in general based on availability of very long data sets. Unfortunately, this is not the
common case in ecological modelling where, for example, population time series for
terrestrial animals are usually composed of tens of samples (see, for example, Turchin
and Taylor (1992) for a compilation of some of the longest data sets available on verte-
brate and insects). ,
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In this paper we use a feed-forward network, trained by a newly proposed learning
technique based on Information Theory (IT). This direct learning approach has been
shown to improve the performance of simple perceptrons, providing very good pre-
dictions based on a rather small quantity of known data (Diambra et al. 1995; Diambra
and Plastino 1995). We will on1y out1ine the method here; the interested reader is encour-
aged to read the original references for an in-depth description of the procedures involved.

Following Diambra, Fernandez, and Plastino, let us consider a simple perceptron
with N inputs Ii connected to a single output unit O whose state is determined accord-
ing to O = g(h), where g(x) is the activation function, h = Wh is the weighted sum of
the inputs Ii, and repeated dummy indices imply a summation over those indices. In
the structures discussedherein, we have choseng(x) = tanh(x). For each set ofweights
W the perceptron maps Ion O. The perceptron is trained with a set of p examples,
with input vectors I!' and the corresponding outputs 0!' = 0(1!'). From here we can write

g-I(O!') = W;I!'; (~.1)

where I!' is an input patterns matrix and g-l( O") is a vector of components g-l( O'), ...,
g-l( oP), given by the output patterns, which constitute our available information. The
central idea in this approach is to use an Information Theory approach to determine
the weights Won the basis of an incomplete information supply (rank (I!')<N, in gen-
eral). In order to determine weights consistent with Eq. 5.1, it is assumed that each set
of weights W is realized with probability P( W). In other words, a normalized prob-
ability distribution is introduced over the collection of possible sets W. The normal-
ization condition is written as

(5.2)jp(W)dW= 1

where dW= dW,. dW? " dW N. Expectation values < W;> are defined as

<Wi> =fp(W)WidW (5.3)

The differential entropy associated with the probability density function P(W) is
written as

s = -!P(W) ln(P(W) I Po(W))dW (5.4)

where Po(W) is an appropriately chosen a priori distribution. The problem of deter-
mining the set of weights W is now transformed into a constrained optimization prob-
lem: we must now determine the form of the probability density function for the dif-
ferential entropy of W to assume its largest value for the prescribed constraints of Eq. 5.1

and Eq. 5.2. The authors) central idea is to reinterpret Eq. 5.1 according to:

g-l(OI') = <~>If (5.5)

where explicit account is taken of the fact that one is dealing with many sets of weights,
eachone being realized with a given probability, and borrowing from statistical me-
chanics the idea that measured data are to be reproduced by theoretical averages.
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It can be shownthat, after maximization of the differential entropy, the expecta-
tion vector < W> can be expressed solely in terms of the training examples, and that it

can be written as

<w> =g-I(OI')IMP[OI'] (5.6)

where IMP(OI') = (Ol'r[ol'(Ol'r]-1 is the Moore-Penrose pseudoinverse. The most prob-

able configuration of weights, compatible with the constraints of Eq. 5.1, is thus given
directly by the pseudoinverse matrix of 01' , with no iterative processes associated with
the training of the network. IT -trained networks have been successfully applied to the

prediction of some classical chaotic time series, even when a small quantity of examples
was made available for the training process (Diambra and Plastino 1995).

5.2.2

The Data Set

As we mentioned earlier in the introduction, ANPP has been shown to be strongly
correlated with the NDVI. Therefore, an analysis of the NDVI cycles and their relation-
ship with the climatic variables may translate into a better understanding of the envi-
ronmental controls of ANPP and into a better predictive power. In this paper, we used
NDVI from 10 sites covering a broad range of climatic conditions acroSS northern
Patagonia (Fig. 5.1, Table 5.1). These locations were selected based on the availability
of precipitation data. We obtained the NDVI data from the Pathfinder AVHRR Land
database (James and Kalluri 1994), from which data was available for a period of 11 years

rJ
Argentina

I
62°W

I
70oW

Fi9. 5.1. Location of the sites used for this study. The sites COVer a broad range of climatic conditions
acroSS northern Patagonia. with mean annual precipitation ranging from 130 mm in Fofo Cahuel to
420 mm in Leleque



CHAPTER 5 .Normalized Difference Vegetation Index Estimation in Grasslands of Patagonia 73

Table 5.1. Characteristics of
the precipitation regime for the
sites selected for the present
study. Mean annual precipita-
tion ranges from 130 mm in the
case of Fofo Cahuel to 420 mm
in the case of Leleque

Site Mean annual Precipitation falling
precipitation (mm) in summer (%)

418

356

328

268

268

214

205

196

J73

153

129

8

9

21

9

22

20

24

9

18

35

14

Leleque"
El Maitén

Yiedma

Esquel

San Antonio Oeste

Trelew

Sierra Colorada

Ñorquinco

Maquinchao

Puesto Martínez

Fofo Cahuel

(1981-1991). For each year 36 images were availableJ each corresponding to a 10-day
composite (Holben 1986). The spatial resolution of the images was 8 x 8 km.J and ev-
ery site was characterized by a single pixel ( 6400 ha).

5.3

Results and Discussion

Our first approach to the problem was to analyse the predictive power of ANNs trained
solely on k past values of the NDVI time series. In this case, the training data were of
the form

Ii = {NDVI(t;), NDVI(ti -1'),

Oi=NDVI(ti+ ml'), i = 1 :p
"NDVI(ti-kT)} and

(5.7>

where p is the number of patterns used for training, T is the sampling period and m
denotes a suitable number of time steps. So given k past values of NDVI, the ANN was
asked to extrapolate the value of the NDVI m steps ahead.

On each site, an ANN was trained by using 8 years of data and tested on the remain-
ing three. The dynamics of the NDVI time series was best captured when 36 past val-
ues ( one year) of data were used as the input. Figure 5.2 shows the NDVI 9-step-ahead

(three months) extrapolation for the case of sites Esquel, Leleque and Fofo Cahuel.
Although the correlation between calculated and observed values of NDVI differed
among sites, the results show that in general the agreement is very good. To evaluate
the performance of our predictors, we calculate the mean square error,

M SE :: E{[NDVlcalc(t, kT) -NDVlobs(t + mT)]1

where E is the expected value operator. Por convenience in the comparison among sites,
we normalizethis bythe mean square deviationofthe data, 02 = E{(NDVI -EfNDVIlr},
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forming the normalized mean square error NMSE = MSE / (J"2 (Farmer and Sidorowich

1987). In this way, smaller values of NMSE correspond to better predictions.
The NMSE values for the case of 9-step-ahead extrapolation ranged between 0.23

and 4.58 (Table 5.2). For sites with relatively small values of NMSE, extrapolation could
be made up to 18 steps in advance (six months) without significant degradation of the

forecasting error.
The results of calculating the NDVI from its internal dynamics highlight interest-

ing aspects of the ecology of the different phytogeographical regions of Patagonia.
Figure 5.3 shows that the NMSE strongly increases as the proportion of precipitation
falling during summer increases. Sites located in the southwestern portion of the area
analysed presented a better agreement between observed and calculated values than
those located in the north-eastern area (Fig. 5.1). These two areas differ on the sea-
sonal pattern of the precipitation. The southwestern area corresponds to the Patagonian
Phytogeographical region. In this area, because of the strong influence of Pacific air
masses, precipitation is mainly concentrated during winter. In contrast, the north-east-
ern portion of the region has a more evenly distributed precipitation regime. This area

corresponds to the Monte phytogeographical region.
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Table 5.2. Normalized mean
square error for extrapolations
based solely on NDVI data, and
predictions based both on past
values of NDVI and accumu-
lated precipitation

Site NDVI trained NDVI + PPT trained

0.46

0.45

1..01

0.23

4.58

2.37

0.56

0.94

4.12

1.06

0.47

0.46

0.8.1

0.24

1.39

0.81

0.58

0.94

1.93

0.49

Leleque

El Maitén

Viedma

Esquel

San Antonio

Sierra Colorada

r\Jorquinco

Maquinchao

Puesto Martfnez

Fofo Cahuel

Fig. 5.3. Normalized mean
square error as a function of
percentage of precipitation
falling in summer. Circles corre-
spond to extrapolation based
solely on past values of NDVI
data, and triangles correspond
to predictions based both on
past NDVI data and accumu-
lated precipitation Solid lines
are exponential fits intended to
show the general trend of the
data

5.0

4.5

4.0

3.5

3.0 1

2.5

2.0

1.5

1.0

0.5

0

~

/

--.

~4'.11
~

o 4020

Precipitation falling in summer 1%)

When ANNs are trained exclusively on past values of NDVI data, the NMSE pro-
vides a measure of the intrinsic predictability of the system. Areas showing a low NMSE
would display a similar phenological pattern every year. Predictability is a very im-
portant attribute of the ecosystems. It would determine, for example, the kind of
evolutive pressure that organisms will experience. Opportunistic strategies will be
favoured in areas where the resources are not reliable in time or space. Predictability
is also important for applied reasons: to define the stocking density on a given range-
land, the nutritional need of the flocks have to match as closely as possible the sea-
sonal dynamics of forage availability. Given the same total production, the average
stocking density will be higher in an environment where thetiming of maximum and
minimum forage availability is similar among years.

A winter concentration of precipitation seems to increase the predictability of the
systems. Areas with winter precipitation in Patagonia showed a decoupling between
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the growing season and the wet season (Paruelo and Sala 1995). During winter, water
is accurnulated in the soil because transpiration losses are low. Soil water is then trans-
ferred from winter to spring. When temperature raises, this water becomes available
to plants. In areas not extremely dry, the amount of water available at the beginning
of the growing season is set by the holding capacity of the soil. Excess water is lost as
deep drainage and/or runoff (Paruelo et al. 1998). Consequently, in areas with winter
distribution of precipitation, a very stable component of the system (the soil) becomes
the main control of water availability.

Predictive power increases when precipitation data are used along with NDVI past
values as inputs. Precipitation was sampled in a 10-day period, corresponding to the
sampling period of the NDVI data. Analysing the available data for precipitation, we
observed that accumulated values are more relevant as inputs than ten-day values.
When precipitation is accumulated by assigning to a given sampling period the pre-
cipitation of the past k periods, it can be seen that for accumulations of 9-10 periods
(about three months) a very well defined structure appears which shows a temporal
correlation with the NDVI series (Fig. 5.4). The cross-correlation function shows a peak
for a lag of approximately 11-14 periods on the NDVlwith respect to the accumulated

precipitation.

Fig. 5.4. a 9-period accumu-
lated precipitation as a function
of time for site Esquel. Values
are obtained by assigning to a
given sampling period the total
precipitation of the past 9 peri-
ods; b NDVI data for site Esquel.
Note the marked correspond-
ence between the upper and
lower parts of this figure, char-
acterized by a lag of about
11 periods on the NDVI series
respect to the accumulated pre-
cipitation
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Augmenting the input vector with six past periods of accumulated precipitation
(taken with a lag of 9 periods with respect to the predicted date) significantly improves
the agreement between calculated and observed NDVI for most of the sites (Table 5.2,
Fig. 5.4). Figure 5.5 shows a 9-step-ahead prediction for the case of sites Esquel, Leleque
and Fofo Cahuel. In the case of site Fofo Cahuel, where the fraction of precipitation falling
in summer is comparatively higher, the NMSE has been reduced by approximately 50%.
Higher reductions in NMSE are observed in places with even lower summer precipitation,
as it is the case of sites San Antonio, Sierra Colorada and Puesto Martínez (Table 5.2).

In summary, the study of the internal controls of the seasonal dynamics of the NDVI

through ANN analysis of satellite and climatic data identified important differences
between two phytogeographical areas (Patagonian and Monte steppes) and allowed
for a satisfactory prediction of the NDVI values up to six months ahead.

ANN analysis is likely to become a valuable tool to be added to the standard toolbox
of the researcher in ecological modelling. In particular, IT -trained ANNs appear as a
promising approach for the analysis of time series in ecology. Preliminary results from
a study we are presently undertaking also show promising results on the prediction
of population time series through the use of IT-trained ANNs.

I Esquel NMSE = 0.24
Fig. 5.5. 9-step-ahead predic- 0.5
tion based on both past values 0.4
of NDVI and accumulated pre-
cipitation for the case of sites 0.3

Esquel, Leleque and Fofo Cahuel. s: 0.2
fValues for the NSME are indi- ~ o'

cated. Note that in Fofo Cahuel, .

where precipitation in summer 0
is relatively higher, inclusion of -o. ,
precipitation data significantly 0 2
improves the agreement be- -.

tween observed and predicted
data respect to extrapolations
based solely on NDVI data
(see Fig. 5.2)
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ANNs and satellite data also provide a very promising alternative for the predic-
tion of ANPP and forage availability over extensive rangelands. Forecast of forage avail-
ability will provide to ranchers and natural resources managers a critical piece of in-
formation to devise sustainable systems in arid and semiarid lands.
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