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Abstract

We tested the potential of artificial neural networks (ANNs) as predictive tools in ecology. We compared the
performance of ANNs and regression models (RM) in predicting ecosystems attributes, with special emphasis on
temporal (interannual) predictions of functional attributes of the ecosystem at regional scales. We tested the predictive
power of ANNs and RMs using simulated data for six functional traits derived from the seasonal course of the
normalized difference vegetation index (NDVI): the annual integral of the NDVI curve (NDVI-I), the maximum
(MAX) and minimum (MIN) NDVI, the date of the MAX NDVI (DM) and the date of start (SGS) and end (EGS)
of the growing season. For one of these traits (NDVI-I), we also generated a set of data that incorporated the effects
of the state of the system in previous years (inertial effects). Even simple non-linearities in the actual functional form
of the relationship between environmental variables and ecosystem attributes preclude a precise prediction of these
attributes when the rules are not explicit. That was evident for predictions based on both ANNs and RMs under
absolutely deterministic conditions (error-free scenario). Non-linearities in the simulated traits of the NDVI curve
derive from multiplicative terms in the models. Under the presence of these non-linear terms, a different aggregation
of the driving variables (monthly vs. annual or quarterly climatic data) reduce substantially the ability of both RMs
and ANNs to predict the independent variable. For the six traits analyzed, the ANNs were able to make better
predictions than RMs. The correlation between observed and predicted values of each of the six traits considered was
higher for the ANNs than for the RMs. ANNs showed clear advantages to capture inertial effects. The ANN used
was able to use previous year information on climate to estimate current year NDVI-I much better than the RM that
used the same input information. © 1997 Elsevier Science B.V.
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1. Introduction

A proper evaluation of human impact on ter-
restrial ecosystems depends on the availability of
‘systems of reference’ (undisturbed areas). Refer-
ence systems need to be characterized not only in
terms of averages but also in terms of the proba-
bilistic distribution of extreme values. Given the
global nature of many of the human-driven
changes (atmospheric composition, climatic
change, land-use) and the availability of long term
datasets, the generation of these reference systems
will depend on models able to reproduce in the
future the present relationships between ecological
attributes and environmental factors.

Regression or correlative models have been
widely used in ecology to explain patterns of
ecosystem attributes using environmental vari-
ables. The attributes analyzed include plant and
animal diversity (Currie and Fritz, 1993), primary
production (Le Houerou et al., 1988; Sala et al.,
1988; Milchunas and Lauenroth, 1993), secondary
production (McNaughton et al., 1989), herbivore
biomass (Oesterheld et al., 1992), seasonality of
the vegetation (Paruelo and Lauenroth, 1995),
distribution of plant functional types (Teeri and
Stowe, 1976, Paruelo and Lauenroth, 1996), and
soil organic carbon (Burke et al., 1989) among
others. Those models provide useful insights on
the environmental controls of the ecosystem at-
tributes analyzed. However, they do not always
possess enough predictive power.

The lack of predictive power is particularly
critical for temporal models, those analyzing how
climate controls ecosystem attributes through
time. Lauenroth and Sala (1992) showed, for a
long-term dataset of aboveground net primary
production (ANPP), that the proportion of the
variance of ANPP explained by climate among
years was substantially lower than for the spatial
model (that generated using average values for
different sites across a region). A common expla-
nation for the low predictive power of temporal
models is the existence of inertial effects. The
response of the ecosystem in a given year is a
function not only of the current year climatic
conditions, but also of the conditions on previous
years. Different kinds of non-linearities, and

threshold responses are additional explanations
for the lack of predictive power of these models.

The global nature of environmental problems
requires the use of tools able to capture changes
in the structure and function of the ecosystems at
large scales. A description of the ecosystem func-
tion at broad scales may be derived from the
seasonal course of the normalized difference vege-
tation index (NDVI) (Lloyd, 1990; Soriano and
Paruelo, 1992; Running et al., 1994; Paruelo and
Lauenroth, 1995). This index, derived from the
red and infrared band of the AVHRR sensor on
board of the NOAA satellites, shows a high corre-
lation with biophysical rates of the target area,
such as transpiration or primary productivity
(Sellers et al., 1992). Information derived from
remote sensing offers a unique opportunity for
monitoring global change issues. However, to
evaluate the impact of human-induced changes on
the ecosystem, actual spectral data from, for ex-
ample, agricultural areas needs to be compared
with the expected patterns for undisturbed areas.
Predictions for the mean and probabilistic distri-
bution of the ecosystem attributes for these refer-
ence situations can be derived in different ways.
Simulation and correlative models have been the
most common tools used to predict ecosystems
attributes from environmental variables.

Our objective is to show the potential of artifi-
cial neural networks (ANNG5) as predictive tools in
ecology. We compared the performance of ANNs
and regression models (RMs) in predicting func-
tional attributes of the ecosystem using climatic
data among years. We tested the predictive power
of ANNs and RMs using simulated data for six
functional traits derived from the seasonal course
of the NDVI: the annual integral of the NDVI
curve (NDVI-I), the maximum (MAX) and mini-
mum (MIN) NDVI, the date of the MAX NDVI
(DM) and the date of start (SGS) and end (EGS)
of the growing season. The use of simulated data
allowed us to evaluate these tools in an error-free
scenario. For one of these traits (NDVI-I), we
also generated a set of data that incorporated the
effects of the state of the system in previous years
(inertial effects).
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2. Methodology
2.1. Artificial neural networks

The field of ANNs has been extremely prolific
since its resurgence in the early 1980s, and espe-
cially in the last few years. Many books are now
available on this subject (Hertz et al., 1991;
Hecht-Nielsen, 1991; Wasserman, 1993). Of the
many different architectures available today, the
most popular are the multi-layer, feed-forward
networks. A feed-forward neural network can be
considered as a transformation which maps a set
of input variables into a set of output variables.
For a single-layer network, these transformation
can be expressed as follows:

A= /(Z W,,I_,-),

where I, is the jth component of the input vector
I, A; is the ith component of the output vector A,
and W and f(.) are called the weight matrix and
the activation function, respectively. Depending
on the nature of the system under study, the
components of the input vector can represent, for
example, the value of different variables of the
system measured at a given time, as it would be
the case in a typical multivariate regression prob-
lem. Or, as in the case of prediction of the time
evolution of a system, the component of the input
vector can represent the value a given variable of
the system for a number of past measurements.
The range of problems treated by means of feed-
forward multi-layer networks is very vast, includ-
ing the analysis of a wide variety of
environmental problems. Some examples are
weather forecasting (McCann, 1992; Derr and
Slutz, 1994), prediction of daily solar radiation
(Elizondo et al., 1994), classification of remotely
sensed data (Liu and Xiao, 199]; Kanellopoulos
et al., 1992; Foody et al., 1995), resource manage-
ment {(Gimblett and Ball, 1995), and many others.

In the present paper we used a multi-layer
network consisting of two layers of nodes fully
interconnected, i.e. with links among all the nodes
in adjacent layers. Each of the nodes was charac-
terized by a sigmoidal transfer function on the
hidden layer and a linear transfer function on the

output layer. The links were characterized by a
connection strength or weight, which was adjusted
during the training of the network and stored
once the network was trained.

The network was trained using the error back-
propagation training algorithm, on which the er-
ror between the desired result and the result
computed by the network is back-propagated
through the network to adjust its weights. Train-
ing was based on the minimization of the total
error by using the gradient descent technique
(Hertz et al., 1991). The learning process was
stopped when a specified error goal was reached.

Programming of the ANN was based on the
neural network toolbox of MATLAB™. The
learning speed of the pure backpropagation
method was improved by introducing momentum,
which makes backpropagation less sensitive to
small features of the error surface and an adaptive
learning rate, that maximizes the learning rate
while maintaining the learning process stable. Ap-
pendix A summarizes the basic expressions de-
scribing the structure of the ANN (Fig. 1).

2.2. Data generation

To characterize the function of the ecosystem
(its exchange of energy and matter) using the
seasonal course of the NDVI, we derived six traits
that capture the essentials of ecosystem carbon
gain dynamics (Lloyd, 1990; Soriano and Paruelo,
1992; Running et al., 1994; Paruelo and Lauen-
roth, 1995). We analyzed the integral of the
NDVI (NDVI-I), the MAX and MIN NDVI, the
day of the year of the MAX NDVI (DM), the day
of the year of the SGS, and the day of the year of
the EGS (Fig. 2). The integral of the NDVI is an
accurate estimator of the ANPP in grassland ar-
eas (Diallo et al., 1991; Prince, 1991; Tucker et al.,
1985; Wylie et al., 1991; Box et al., 1989; Paruelo
et al., 1997). We used the inflection points of the
ascending and descending portions of the seasonal
curve of the NDVI as an estimator of the SGS
and EGS (Fischer, 1994) (Fig. 2). The traits
MAX, MIN and DM provide additional informa-
tion on the seasonality of carbon gains.

We generated 13 years of data (1981-93) for
the six traits using simple rules on the relation-
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Fig. 1. Schematic representation of the ANN, Appendix A,

ships between each trait and climatic variables.
Because we do not know the actual functional
form of these relationships (‘Nature’s laws’) we
used arbitrary but plausible rules. These rules
were based on spatial models of the relationship
between the six traits and climate (Paruelo, 1995;
Paruelo and Lauenroth, 1995) (Table 1). These
models, though quite simple, include several non-
linear terms. The spatial models were derived
from average values over 3 years of each trait and
climate for 43 sites over the central grasslands of

08

MAX NDVI-I
04 -/

03

NDVI

o2t MIN

JAN / JuL \ \ DEC
SGS DM EGS
Fig. 2. Example of the seasonal NDVI curve showing the
different traits considered: the annual integral of the NDVI
curve (NDVI-I), the MAX and MIN NDVI, the date of the
MAX NDVI (DM) and the date of SGS and end EGS.

North America (Paruelo, 1995; Paruelo and
Lauenroth, 1995). To minimize the problems of
using a spatial model to make temporal predic-
tions, we selected a site in the central portion of

Table 1
Rules used to generate the functional traits used to train the
ANN and to fit the RM

NDVI-I = 0.1080-0.240. FALL+0.000413.

MAP—9.30—10"° MAP. MAT

MAX = 0.174-0.454. FALL +0.00102. MAP—3.84x 1073
MAP. MAT

MIN = —0.11140.0575. SUM+0.000236. MAP +0.0105.
MAT—1.218 x 107°. MAP MAT

DM =216+ 107. SUM—287. WIN +2.57.
MAT-3.42.AMP

SGS =62+182. SUM —213. WIN

EGS =201+ 121. SUM —319. WIN+0.00443. MAP

MAP, mean annual precipitation; MAT, mean temperature;
AMP, annual thermal amplitude; WIN, proportion of precipi-
tation falling in winter (December, January and Febraury);
SUM, proportion of precipitation falling in summer (June,
July and August); FALL, proportion of precipitation falling in
fall (September, October and November).

ANN, artificial neural network; RM, regression model; NDVI,
normalized difference vegetation index.

The rules were applied to climatic data for Hays (KS, USA)
for the period 1981-1993. The functional traits generated
using the rules were: the annual integral of the NDVI curve
(NDVI-I), the MAX and MIN NDVI, the date of the MAX
NDVI (DM) and the date of SGS and EGS.
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the typical precipitation gradient found in the
central grassland region (Hays, Kansas, 38.87°N,
99.38°W). Paruelo et al. (1997) proposed that the
difference between temporal and spatial models
would be minimal for sites with intermediate lev-
els of precipitation.

For the integral of the NDVI we generated an
additional set of data using a rule that incorpo-
rated inertial effects. The integral of the NDVI
calculated using the rule presented in Table 1 was
multiplied by the ratio between the NDVI-I of the
previous year and the mean NDVI-I over the
whole period.

2.3. Generation of predictive models from the
simulated data

2.3.1. ANN training

We trained the ANN using 13 years of monthly
precipitation and temperature data as inputs and
the values of each of the six traits generated using
the rules presented in Table 1 as known outputs.
Climatic data were obtained from the EarthInfo,
1993 database. For the integral of the NDVI that
include inertial effects we also included in the
input layer the precipitation and the temperature
of the previous year,

The high power shown by ANNs in fitting
highly nonlinear data is menaced by the risk of
overfitting, which endangers the predictive power
of the network. To reduce the overfitting problem,
we carried out an optimization on two parameters
of the network: the number of nodes of the hid-
den layer and the error goal used to stop the
training process.

We trained cyclically the network by presenting
12 of the 13 years as training samples, and we
took the data of the remaining year as validation
sample. For each pair of values of the optimiza-
tion parameters mentioned above, we calculated a
figure of merit that we called the total validation
error. This quantity is the sum of the squared
errors of the network for the 13 different valida-
tion samples.

Using this validation procedure, we observed
that the optimum value for the number of nodes
in the hidden layer was between 12 and 14. The
optimum number of nodes in the hidden layer is a

parameter of the ANN that depends on both the
size of the data set available for training and the
specific problem to be solved.

The optimum error goal also depends on the
data set, and it is different for each of the traits
considered for training. The total validation error
is a function of the error goal, and it usually
reaches a MINIMUM value after which it grows
rapidly. This growth is indicative of overfitting. If
the validation error does not present a MINI-
MUM, then the network is not complex enough
to overfit. That could mean that the number of
nodes in the hidden layer is not large enough to
perform satisfactorily. To optimize the error goal
in our study, we trained the network with decreas-
ing values of this quantity until we reached a
MINIMUM on the total validation error.

It should be noticed that the span covered by
the training data is also an important issue that
can endanger the generalization power of the
resulting ANN. As the purpose of the network is
to generalize to new cases, the input data for
training should be as extensive as possible, while
still being of a practical size.

2.3.2. Regression analysis

For the same set of data used to train the ANN
we performed a step-wise regression analysis
(Kleinbaum and Kupper, 1978) for each of the six
traits. The independent variables considered were
the same used as the input layer of the neural
network: monthly precipitation and temperature.
For the data set with inertial effect we considered
also the monthly temperature and precipitation of
the previous year. Regression analysis were per-
formed in SAS (SAS, 1988). The RM fitted are
presented in Appendix B.

2.3.3. Comparison of the ANN and RM

To evaluate the predictive power of both the
ANN and the RM we used a independent climatic
data set (1971-1980) from the one used to gener-
ate the RMs or to train the ANN. For each trait
we compared the mean absolute errors (ABS
((predicted — observed)/observed) x 100) of the
predictions for the 10 year period. We also looked
at the correlation coefficient of the observed and
predicted values of the six traits. The diagram in
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Fig. 3. Scheme showing the procedure to generate the functional traits from the 1981-93 climatic records using the rules presented
in Table I (observed ecosystem attributes). These attributes were used to fit the RM and to train the ANN. The RM and the ANN
were used to predict the ecosystem attributes from the climatic data corresponding to the period 1971-80.

Fig. 3 shows the different steps of the analysis
performed.

3. Results

The mean absolute errors of the predictions
were in general lower for the ANN than for the
RM (Fig. 4). The differences between both meth-
ods were more dramatic for the NDVI-I, MAX
and MIN variables. Only for DM the mean abso-
lute error of the prediction of ANN was larger
than of RM.

For each individual trait the absolute error
varied according to the mean square errors (MSE)
specified in the training process of the ANN or to
the number of variables included in the regression
model (Fig. 4). Problems of overfitting readily
appeared in the ANN for SGS and EGS. An
increase in the precision of the fitting during the
training period translated into a lack of predictive
power for the resulting ANN.

Overfitting was also evident for the RMs. For
the NDVI-I and DM, the mean absolute error of
the predictions increased with the number of vari-
ables included in the models (from A to C) (Fig.
4). The step-wise regression procedure fitted mod-
els with 611 variables depending on the trait
(Appendix B). These models explained more than
98% of the variance of the training data, however,
they have a limited predictive power.

The correlation coefficient between observed
(generated using the rules presented in Table 1)
and predicted data was always higher for the
ANN than for the RM (Fig. 5). ANN predictions
showed a better correspondence with observed
values than RM even in the case of DM, for
which the absolute error was higher for ANN
than for RM. For both methods, the correlation
coefficients were lower for the variables that char-
acterize the timing of some features of the NDVI
curve than for those characterizing the level of
NDVI (Fig. 5).
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Fig. 4. Absolute error (ABS ((predicted — observed)/observed) x 100) for the six ecosystem attributes analyzed and for predictions
derived from RMs and ANNs. Dashed bars cotrespond to ANNs predictions and closed bars to RMs predictions. Bars A
correspond to ANNs trained with a MSE of 0.05 and to RMs including one variable. Bars B correspond to ANNs trained with a
MSE of 0.01 and to RMs including two variables. Bars C correspond to ANNs trained with a MSE of 0.005 and to RMs
considering all the variables included by the step-wise regresion procedure.

When the NDVI-I incorporated inertial effects, the RMs showed higher absolute errors than the
the absolute error of the ANN predictions was ANN, and similar to those of the RM for the case
similar to the case without the effect of the previ- of non-inertial effects. The coefficient of correla-
ous year (Figs. 4 and 6). The predictions based on tion of the observed and estimated NDVI-I for
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Fig. 5. Comparison of the observed and predicted values of the six ecosystem attributes considered: the annual integral of the NDVI
curve (NDVI-I), the MAX and MIN NDVI, the date of the MAX NDVI (DM) and the date of SGS and EGS. Diamonds
corresponded to the ANN predictions and squares to the RM predictions. We used for the comparsion the ANN and the RM
showing the lowest absolute error in Fig. 4. The line corresponds to the 1:1 line and r is the coefficent of correlation between
observed and predicted values.

the best ANN (B) was only 10% lower than in the model the reduction in the correlation coefficient
case of non-inertial effects (r=0.82, Fig. 6, vs. between observed and predicted NDVI-I was
r=0.92, Fig. 5). In the case of the regression about 30% (r =0.50, Fig. 6, vs. r=0.71, Fig. 5).
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4. Discussion and conclusions

To what extent is our ability to describe tempo-
ral processes in ecosystems constrained by the
analytical tools used? Assuming that the func-
tional form of the relationship between environ-
mental variables and ecosystem attributes is
known, the problem of fitting the parameters is
relatively easy. If the relationship with the
parameters is linear, it reduces to a simple mini-
mization problem. If the functional form depends
non-linearly on the parameters (it includes terms
that are products, powers or functions of the

Absolute error (% of the observed value)

35r7

30

25
20
15
10

. o o
MSE/# variables

Coeff. of correlation observed-estimated

B NNET
B REGMOD

A B
MSE/# variables

Fig. 6. Absolute error (ABS ((predicted — observed)/ob-
served) x 100) (upper graph) and coefficent of correlation be-
tween observed and estimated values (lower graph) of the
NDVI intergral (NDVI-I) incorporating inertial effects for
predictions derived from RMs (closed bars) and ANNs
{(dashed bars). Bars A correspond to the ANN trained with a
MSE of 0.05 and to the RM including one variable. Bars B
corespond to the ANN trained with a MSE of 0.005 and to the
RM considering all the variables included by the step-wise
procedure.

variables) the problem is slightly more complex
and requires an iterative solution. Complexity in-
creases when both the functional form and its
dependence on the parameters are unknown. Even
simple non-linearities in the actual functional
form of the relationship between environmental
variables and ecosystem attributes preclude a pre-
cise prediction of these attributes when the rules
are not explicit. That was evident for predictions
based on both ANNs and RMs under absolutely
deterministic conditions (error-free scenario).
Moultiplicative terms in the model are responsible
from the non-linearities in the simulated traits of
the NDVI curve. Under the presence of these
non-linear terms, a different aggregation of the
driving variables (monthly vs. annual or quarterly
climatic data) substantially reduces the ability of
both RMs and ANNSs to predict the independent
variable.

For the six traits analyzed, the ANNs were able
to make better predictions than RMs. The corre-
lation between observed and predicted values of
each of the six traits considered was higher for the
ANNs than for the RMs (Fig. 4). The better
performance shown by ANNs derived mainly
from their ability to capture non-linearities. Their
intrinsic nonlinear structure makes them particu-
larly suitable as fitting tools. It can be shown that
three-layered backpropagation networks can ap-
proximate an arbitrary function with the desired
degree of accuracy (Hecht-Nielsen, 1991).

The incorporation of non-linear terms in the
RMs is of course possible, but it has some practi-
cal limits. Including quadratic and logarithmic
transformations in the RM of this exercise in-
creases the number of dependent variables from
24 up to 72. Including two-way interactions
among the 24 variables means to add n(n —1)/2
more variables (276). Prior knowledge on the
functional form of the relationship between envi-
ronmental variable or the level of aggregation of
the independent variables poses serious con-
straints on the possibility of describing these rela-
tionship using RMs.

ANNs provide a ‘black-box’ approach to the
description of the relationship between two sets of
variables. Even an ANN able to make perfect
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predictions would tell us nothing about the func-
tional form of the relationship between the input
variables and the output layer. The bias vectors or
the weight matrices of the network do not have
any direct biological meaning. Numerical experi-
mentation with the ANNs may help, however, to
identify the most important input variables and
the functional form of the relationship between
them and the outputs. ANNs are a useful tool
two understand dynamical systems. The behavior
of these systems is complicated both in space and
time. These problems are particularly hard be-
cause they are both large and non-linear. Ecologi-
cal problems often have these characteristics.

Overfitting is one of the main concerns regard-
ing the use of ANNs. For our example, overfitting
problems were similar for both ANNs and RM:s.
Both the absolute error and the ability to predict
(correlation coefficient) changed according to the
MSE specified during the training (in the case of
the ANN) or according to the number of vari-
ables considered (in the case of the RM). The
optimum number of variables included in the
regression model or the MSE used to train the
ANN depended on the trait considered.

ANNSs showed clear advantages to capture iner-
tial effects. The existence of historical effects is
common in ecological attributes (Pennington,
1986; Malanson et al., 1992; Cole, 1985). In arid
and semiarid areas community structure may
buffer changes associated to climatic fluctuations
(Lauenroth and Sala, 1992). The response of the
ecosystems to the current level of resources can be
influenced by the availability of resource on previ-
ous years (Milchunas and Lauenroth, 1995). For
the example analyzed here, the ANN was able to
use the previous year’s information on climate to
estimate current year NDVI-I1 much better than a
RM that use the same input information. The
correlation between observed and predicted values
of the NDVI integral was only 10% lower in the
presence of inertial effects than in the case with-
out inertial effects.
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Appendix A

The basic structure of the ANN used in this
paper is shown in Fig. 1. When presented to an
input vector I, the hidden neuron / receives an
input equal to

H\;= B+ W1,

where B, and W, are the bias vector and weight
matrix of the first neuron layer, respectively, and
repeated dummy indices imply a summation over
those indices. The neuron i then produces an
output

Ali :f(Hli) =f(Bli + Wlika)a

where fis the transfer function of the neuron. The
neuron j at the output layer receives an input

Hy =B, +WyAd,;= By + W, f(B), + Wy, I}),
producing a final output of
Ay =g(Hy)=g(By+ Wyd,)

= g[By+ Wy, /(B + W, 1),

where B,, W, and g are the bias vector, weight
matrix and transfer function of the output layer,
respectively. In order to train the network, the
transfer functions must be differentiable. Both the
choice and shape of the activation function
strongly affect the speed of the network learning
and its generalization capabilities. For our calcu-
lations we have used a logistic sigmoid as the
activation function for the hidden layer, which is
given by:

fy=1/(1+e ).

The network is trained using the gradient descent
technique to minimize the sum of the square
errors of the output values

N
SSE=Y (0,— 0,7

i=1
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where O, are the observed values, O, are the
values computed by the ANN, and N is the
number of cases available for training. The learn-
ing algorithm of backpropagation networks uses
the derivative of the transfer function as a multi-
plicative factor for the adjustment of the weights
(Hertz et al., 1991). As the derivative of the
sigmoidal functions peaks at zero and vanishes for
large absolute values of the argument, the weights
of neurons with uncertain responses are more
strongly corrected than those of neurons which
are turned on or off.

Appendix B

RMs fitted using the step-wise procedure for
the six functional attributes analyzed and for the
period 1981-93. The independent variables in-
cluded for each year were monthly precipitation
and temperature. The dependent variables
(ecosystem attributes) were calculated using the
rules presented in Table 1. The models corre-
sponding to one, two, and all the variables se-
lected by the method, are presented.

NDVI-1
Coefficient F P>F
One variable (r* = 0.65)
INTERCEP 0.16108722 44.82 0.0001
PPT-Au- 0.00134924 20.21 0.0009
gust
Two variables (r2 = 0.76)
INTERCEP 0.51999316 9.4 0.0119
PPT-Au- 0.00125631 22.5 0.0008
gust
TEM-Sep- —0.01754499 4.5 0.0587
tember
All variables (r? = 0.99)
INTERCEP 0.02763296 152.8 0.0065
PPT-Janu- 0.00073670  244.8 0.0041

ary

PPT-March  0.00047173
PPT-April 0.00009613
PPT-May 0.00037383
PPT-July 0.00044819
PPT-Au- 0.00074108
gust
PPT-Octo- 0.00106020
ber
PPT- 0.00020286
November
TEM-Janu- —0.00191243
ary
TEM- —0.00091627
Febraury

MAX

Coefficient

One variable (7> = 0.63)
INTERCEP 0.25939467

PPT-Au-
gust

0.00266121

Two variables (r2=0.77)

INTERCEP 1.05408810
PPT-Au- 0.00245545
gust
TEM-Oc- —0.0388483
tober

All variable (r% = 0.99)
INTERCEP 0.00289053
PPT-Janu- 0.00141142
ary
PPT- 0.00088634
March
PPT-May 0.00078959
PPT-July 0.00094964
PPT-Au- 0.00144167
gust
PPT-Octo-  0.00206903
ber
TEM-Jan- —0.00691907
uary
TEM-De- —0.00332483
cember

1327.9
259
391.2
843.5
1054.5
2254.2
44.0
68.7

6.2

F

28.1

19.0

10.2

22.7

5.9

0.24
138.7
796.0
297.5

1057.4
926.0
1206.1
89.4

36.5

0.0008
0.0365
0.0025
0.0012
0.0009
0.0004
0.0219
0.0142

0.1301

P>F

0.0003

0.0011

0.0095

0.0008

0.0355

0.6473
0.0003
0.0001
0.0001
0.0001
0.0001
0.0001
0.0007

0.0038

183



184 J.M. Paruelo, F. Tomasel / Ecological Modelling 98 (1997) 173—186

MIN
Coefficient
One variable (r2 = 0.75)
INTERCEP 0.06652437

PPT-Au-
gust

0.00043496

Two variables (r* = 0.92)
INTERCEP 0.06078804

PPT-July 0.00014137
PPT-Au- 0.00031927
gust

All variables (r*> = 0.99)
INTERCEP 0.05367334

PPT-April 0.00003149
PPT-June 0.00013422
PPT-July 0.00013058
PPT-Au- 0.00026429
gust

TEM- 0.00167548
April

TEM-June —0.00021012
TEM-Au- 0.00113402
gust

TEM-Oc¢- -0.00351703
tober

TEM-De- —0.00043771
cember

DOYMAX
Coefficient

One variable (r* = 0.64)
INTERCE 170.85180226
P
TEM-Jan-
uary

Two variable (r* = 0.86)
INTERCE 178.52491153
P
TEM-Jan-

uary

7.69378938

9.24654198

F P>F

117.9  0.0001

323 0.0001

262.4  0.0001
22,6 0.0008
39.8  0.0001

127.5 0.0015
62.2  0.0042
1529.6  0.0001
45259 0.0001
4521.3  0.0001
436.4  0.0002
8.4 0.0626
91.8 0.0024

226.8 0.0006

87.19 0.0026

F P>F

784.330.0001

19.920.0010

1548.660.0001

57.480.0001

TEM-De- 4.45031447

cember

All variables (7> = 0.99)

INTERCE 62.22683741
P
PPT-Au- 0.12547250
gust
PPT- —0.30590180
November
TEM-Jan-  7.18357027
uary
TEM- 0.91560916
Febraury
TEM- —0.79504176
March
TEM- 4.33868142
April
TEM- —0.43426043
May
TEM-July —2.22517341
TEM-Au- —0.20962879
gust
TEM-Oc-  10.65572552
tober
TEM-De- 3.78174085
cember

SGS

Coefficient

One variable (rZ = 0.45)
INTERCEP313.12314559

TEM-Au-
gust

—8.36301708

Two variables (r> = (.58)
INTERCEP333.71816484

PPT- —0.33819664
November

TEM-Au- —8.79689857
gust

All variables (r> = 0.99)
INTERCEP193.20511601

14.700.0033

12229.4

56156.9

125441

525347

15229.0

2541.1

96548.2

1368.5

5696.5
55.1

181151

263310

20.2

9.0

26.77

3.20

11.92

1896.7

0.0058

0.0027

0.0020

0.0020

0.0052

0.0126

0.0020

0.0172

0.0084
0.0852

0.0020

0.0020

P>F

0.0009

0.0119

0.0004

0.1037

0.0062

0.0146
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PPT-January —0.39376188 2809.1 0.0120
PPT-March  —0.02991613 158.1 0.0505
PPT-July 0.18179736 4787.3 0.0092
PPT-Octo- —0.16572134 733.0 0.0235
ber
PPT- —0.51597865 6477.7 0.0079
November
TEM- 2.83194904 1336.2 0.0174
Janu-
ary
TEM- 1.66451740  940.0 0.0208
Febraury
TEM-May 0.61412766 34.170.1079
TEM-Au- —4.58509910 1734.5 0.0153
gust
TEM-Octo- 3.15208142 313.6 0.0359
ber
TEM- —1.00044555 150.8 0.0517
November
EGS
Coefficient F P>F
One variable (r* = 0.45)
INTERCEP  469.71682089 37.1 0.0001
TEM-August —9.15780142 8.8  0.0126
Two variables (r2 = 0.67)
INTERCEP  491.10520008 60.3  0.0001
PPT-January —0.55131453 6.6  0.0277
TEM-August —9.39111922 14.04 0.0038
All variables (r> = 0.98)
INTERCEP  635.81598123244.8  0.0001
PPT-January —0.99393678 140.0  0.0001
PPT-August 0.21237644 25.0  0.0024
PPT-October —0.23090247 12.3  0.0125
PPT-Novem- —0.54986285 56.0  0.0003
ber —6.14060120
TEM-May 28.5  0.0018
TEM-October —10.05940298 109.1 0.0001
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