Mixed hummingbird–long-proboscid-fly pollination in ‘ornithophilous’ Embothrium coccineum (Proteaceae) along a rainfall gradient in Patagonia, Argentina

MARIANO DEVOTO,*† NORBERTO H. MONTALDO† AND DIEGO MEDAN
Cátedra de Botanica, Facultad de Agronomía de la Universidad de Buenos Aires, Av. San Martin 4453 (C1417DSE), Buenos Aires, Argentina (Email: mdevoto@agro.uba.ar)

Abstract The pollination ecology of eight populations of the tree Embothrium coccineum was studied along a steep rainfall gradient in NW Patagonia, Argentina. The showy red flowers suggest an ornithophilous pollination syndrome and they have been reported to attract hummingbirds in Argentina and hummingbirds and passerines in Chile. At each population, flower visitors were recorded and floral rewards were analysed. We found a highly significant increase in nectar concentration towards the drier end of the gradient, but this change was not related to the turnover of species in the flower-visitor assemblage of E. coccineum. In addition to the hummingbird Sephanoides sephaniodes (Green-Backed Firecrown, Trochilidae) which is widespread throughout the temperate forest at this latitude, other species seem to be locally important as pollinators of E. coccineum in some sites in Argentina (e.g. two long-tongued tanglewing flies (Nemestrinidae) of the genus Trichophthalma). The long-dated occurrence of tanglewing flies in South America, relative to the more modern hummingbirds, suggests that ornithophily may be a derived character in E. coccineum, the ancestral condition being pollination by Nemestrinidae.

Key words: Embothrium, hummingbird, Nemestrinidae, pollination, Proteaceae.

INTRODUCTION

In the past few years, evidence has accumulated on the many factors that affect patterns of interaction between plants and pollinators, both at the species and the community level. Variation in plant–pollinator interactions has been reported in response to differences in landscape structure (Steffan-Dewenter et al. 2002), habitat fragmentation (Aizen & Feinsinger 1994a,b), and changes in altitude (Arroyo et al. 1982; Malo & Baonza 2002; Medan et al. 2002), latitude (Elberling & Olesen 1999; Ollerton & Cranmer 2004) and insularity (Olesen & Jordano 2002). The effect of environmental variables on plant–pollinator systems can be approached by studying geographical gradients. These have been commonly used as ecological tools for understanding the influence of environmental factors on structure and functioning of terrestrial ecosystems (Vitousek & Matson 1991; Steffen et al. 1999), among other reasons, because geographical environmental variation gives rise to changes in the species composition of interacting guilds (Totland 1993; Medan et al. 2002; Fabbro & Körner 2004). Also, variability in the environmental conditions and the associated changes in the species composition of interacting guilds give rise to spatial mosaics of interactions which may be a key factor for speciation driven by interactions (Thompson 1998; Johnson & Steiner 1997; Totland 2001).

In the Patagonian region of South America, from 35° to 55°S, there is a strong east-west rainfall gradient caused by the Andes which impose an important barrier to the wet air masses from the Pacific Ocean (Paruelo et al. 1998a). This gradient is associated with a striking shift in vegetation in less than 150 km in an east–west direction from xeric desert shrubland to grass-shrub steppe, to a low stature tree cover and finally to closed canopy forest (Movia et al. 1982; Paruelo et al. 1998b; Austin & Sala 2002).

Two previous studies in the region analysed the community-scale effect of this geographical gradient on plant–pollinator interactions. Aizen and Ezcurra (1998) found a significant eastward decrease in bird-pollinated taxa throughout the region and related this pattern to a response of plants to abiotic conditions rather than to an innate scarcity of suitable bird flower-visitors. The ubiquity across the region of the native hummingbird Sephanoides sephaniodes (Molina) (Ralph 1985) further supported this view. An untested hypothesis, suggested by Aizen and Ezcurra (1998), is that bird-pollinated taxa might be unable to produce...
the high nectar rewards required for hummingbird pollination under water-stress conditions. Devoto et al. (2005) reported a significant eastward (i.e. from the forest towards the steppe environments) replacement in the flower-visitor assemblage of Diptera by Hymenoptera species. However, it is not known whether this community-level pattern would be reflected in the visitor assemblage of a given plant species with a widespread distribution along the gradient.

In this context, the present study analysed the effect of the rainfall gradient on the pollination ecology of a typically ornithophilous species (Embothrium coccineum J. R. Forst. & G. Forst. – Proteaceae) which is commonly visited by the hummingbird Sephanoides sephaniodes on both slopes of the Andes (Smith-Ramírez 1993; Fraga et al. 1997). The aims were to test whether (i) available nectar became less abundant and/or more concentrated towards the drier end of the gradient (as a response to increased water stress to plants and higher water evaporation from the nectar to the dry air); and (ii) the assemblage of flower-visitors to E. coccineum changed significantly along the rainfall gradient. Significant changes in the quantity/quality of nectar resources produced by E. coccineum and an associated absence of hummingbird pollination towards the drier sites would support Aizen and Ezcurra’s (1998) hypothesis.

METHODS

Study populations and focal species

The study was carried out on the eastern slope of the Patagonian Andes within the Nahuel Huapi and Lanín National Parks in Argentina, approximately between 39–40° S and 71–72° W. The study sites encompassed humid Nothofagus-dominated forests (close to the Valdivian rainforests of Chile; Donoso Zegers 1993; Arroyo et al. 1996), to the easternmost outskirts of Austrocedrus-dominated dry forests on the border of the grass-shrub Patagonian steppe (Paruelo et al. 1998b). Within the described gradient, we selected eight sites (Table 1) ranging from 900 to 2550 mm in annual rainfall (a c. 2.8-fold change). The sites ranged in altitude from 727 to 1000 m a.s.l. and in mean annual temperature from 8 to 10°C (Movia et al. 1982). Average distance between populations was about 75 km.

Embothrium coccineum (locally known as ‘notro’ or ‘ciruelillo’) is a common tree species endemic to the temperate forests of southern South America (Sleumer 1984) which can reach 10 m in height (Sleumer 1984; Smith-Ramírez & Armesto 1998) but has a shrubby habit (1-4 m high) in the easternmost

<table>
<thead>
<tr>
<th>Site (abbreviation)</th>
<th>Date of field observations</th>
<th>Geographic coordinates</th>
<th>Rainfall (mm)</th>
<th>Mean temperature (°C)</th>
<th>Sample size (population size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lago Lago Lago Quellí (LQ)</td>
<td>Dec. 1999, Jan. 2000</td>
<td>S 40° 09′ W 71° 54′</td>
<td>S 40° 34′</td>
<td>W 71° 13′</td>
<td>2550</td>
</tr>
<tr>
<td>Lago Lago Lago Pago Pago Pago (PP)</td>
<td>Dec. 2001</td>
<td>S 39° 44′ W 71° 55′</td>
<td>S 39° 34′</td>
<td>W 71° 23′</td>
<td>1550</td>
</tr>
<tr>
<td>Lago Lago Lago Arroyo Arroyo Arroyo (AP)</td>
<td>Dec. 2001</td>
<td>S 39° 45′ W 71° 30′</td>
<td>S 39° 34′</td>
<td>W 71° 12′</td>
<td>1450</td>
</tr>
</tbody>
</table>
populations. The blooming period of *E. coccineum* extends from October to January. The showy red flowers suggest an ornithophilous pollination syndrome (e.g. Faegri & van der Pijl 1971; Proctor et al. 1996) and have been reported to attract a hummingbird (*Sephanoides sephanoides* (Lesson) Trochilidae; Smith-Ramírez 1993; Fraga et al. 1997; Aizen et al. 2002) and other nectarivorous species of birds in Chile and Argentina (Smith-Ramírez & Armesto 1998, 2003). Reports of insect visitors to *E. coccineum* are scarce but include three unidentified species in Halictidae, Apidae and Vespidae (Puyehue; Riveros et al. 1991), and the colletid bee *Diploglossa gayi* (Chiloé; Smith-Ramírez et al. 2005), both in Chile. Evidence suggests that *E. coccineum* is self-incompatible on both the western (Riveros, unpubl. 1991) and eastern (Devoto et al. unpubl. 1998) slopes of the Andes.

Flower visitors

At each population, 4–5 trained observers recorded flower-visitors to several full-bloom individuals of *E. coccineum* over a period of 7–8 days in mid-December. Additionally, a smaller team of 1–2 observers revisited most populations in mid-January and/or mid-December of a later year (see Table 1 for details). We recorded a given flower visitor as a putative pollinator only if it worked in such a way that pollen removal or deposition on stigma was possible.

Birds were identified visually. All visiting insects were collected and pinned for later identification. Placement, abundance and purity of pollen loads were characterized for all insect species with three or more recorded visits to flowers. To assess the presence of *E. coccineum* pollen, insect parts that showed visible loads (under 25× magnification) were rubbed with a small cube of gelatin-glycerin (Beattie 1971). Each cube was then melted on a slide and pollen grains of *E. coccineum* and other species were counted on 10 fields per slide (totaling a surface of 49.5 mm²/slide).

Nectar production

To assess nectar production at each population, several flowering branches were enclosed in paper bags during 1 day, and the next morning the nectar volume was measured using a 10-µL Hamilton syringe (accuracy: ±1% of nominal volume). We also measured equivalent sucrose concentration (in °Brix; g of solute per 100 g of solution; Bolten et al. 1979) using a handheld refractometer modified for small volumes. The length of the flower tube was measured to the nearest 0.1 cm at each site.

Quality of the data set

Species turnover in pollinator communities can be very significant over time and space (Williams et al. 2001; Potts et al. 2003; Herrera 2005). Assemblage spatial variability was accounted for by sampling in several sites encompassing much of the regional environmental variation. The absence of *E. coccineum* eastward from our driest site (authors’ pers. obs. 1997 & 2003) suggests that samplings included the total longitudinal distribution of this species, at least on the eastern slopes of the Andes. Regarding seasonal variation, we believe that the relatively short sampling window we used did not seriously flaw our data given the unimodal and strongly seasonal reproductive phenology of the populations studied, where the activity of most pollinators is markedly concentrated in December and, to a lesser extent, in January (Smith-Ramírez & Armesto 1994; Riveros & Smith-Ramírez 1996). A third concern is that our survey may undersample interannual variation. We hope to have partially circumvented this problem by sampling five out of eight sites in at least two different seasons (Table 1).

Data analysis

A log-linear analysis was performed with sites and frequencies of species of flower visitors (grouped in four categories: hummingbirds, bees, flies and other insect orders) as response variables to test for overall differences among sites in flower-visitor composition. Linear regressions were performed to relate variations in floral characters to rainfall changes along the gradient. In order to achieve normality and homoscedasticity, nectar volume was natural-log transformed, whereas the arcsine square-root transformation was applied to sucrose concentration. Means are reported with standard errors unless otherwise noted.

RESULTS

Flower visitors

In seven out of the eight populations surveyed, insects and/or birds visiting flowers of *E. coccineum* were recorded (Table 2). We recorded no visitors to *E. coccineum* at Villa Traful, although observations there could only be made on few, rather isolated individuals within clearings of a closed forest. The composition of the visitor assemblage showed a significant variation between sites (group-level analysis; χ² = 19.79, *P* = 0.0030). However, this species diversity was not significantly related to changes in annual rainfall along the gradient (Spearman rank-order
correlations; hummingbirds, $\rho = 0.63$, $P = 0.12$; Hymenoptera, $\rho = 0.21$, $P = 0.63$; Diptera, $\rho = 0.43$, $P = 0.33$; other orders, $\rho = 0.61$, $P = 0.14$). Overall species richness of visitors to the flowers of *E. coccineum* was not related to changes in rainfall (Pearson Correlation Coefficient, $r = 0.65$, $P = 0.15$). Overall, 32 flower-visitor species were recorded. However, we focused on five species that were recorded six or more times in the study (Table 2). These were the hummingbird *Sephanoides sephaniodes* (observed at five populations), two halictid bees (*Corynura prothysteres* (Vachal) at Lago Tromen (LT), Lago Huechulafquen (LH) and Arroyo Minero, and *Corynura* sp. 2 at Arroyo Pedregoso (AP)), and two nemestrinid flies (*Trichophthalma niveibarbis* (Bigot) at LT and Viuda de Barriga (VB), and *T. philippii* Ron- dani at Lago Queñi (LQ), LT and VB). Previous reports (Fraga et al. 1997; Smith-Ramírez & Armesto 1998; Aizen et al. 2002) also identified the nectarivorous *Sephanoides sephaniodes* as a possible pollinator. We recorded the two halictids collecting only pollen. They had on their bodies a consistently high proportion of pollen grains from *Embothrium* (69–87%; Table 3). Both species of nemestrinids (tanglewing flies), firmly grasped petal lobes of *E. coccineum* as they foraged for nectar and while doing so they touched the tip of the pollen presenter, where the stigmatic slit is located, with their often pollen-loaded abdomen (Fig. 1). The mean proportion of pollen grains on their bodies was 77% to 91% (Table 3). For the common pollinators, a shaded cell indicates that the (morpho)species (rows) was observed visiting flowers of *E. coccineum* at the corresponding population (columns). The number of individuals of each species caught visiting *E. coccineum* is also provided. Given their high abundance in the field, individuals of *Trichophthalma niveibarbis* and *Corynura prothysteres* were only captured for the reference collections. Birds were not captured. AM, Arroyo M inero; AP, Arroyo Pedregoso; LH, Lago Huechulafquen; LQ, Lago Queñi; LT, Lago Tromen; PP; Paso Puyehue; VB, Viuda de Barriga.

Table 2. Species diversity of visitors and most common pollinators of *Embothrium coccineum* at seven populations in NW Patagonia, Argentina

<table>
<thead>
<tr>
<th>Sites</th>
<th>LQ</th>
<th>PP</th>
<th>LT</th>
<th>AP</th>
<th>VB</th>
<th>LH</th>
<th>AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visitor group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>8</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coleoptera + Lepidoptera</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total species richness of the visitor fauna at each population</td>
<td>17</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Most common pollinators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sephanoides sephaniodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichophthalma niveibarbis</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichophthalma philippii</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynura prothysteres</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynura sp. 2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the common pollinators, a shaded cell indicates that the (morpho)species (rows) was observed visiting flowers of *E. coccineum* at the corresponding population (columns). The number of individuals of each species caught visiting *E. coccineum* is also provided. Given their high abundance in the field, individuals of *Trichophthalma niveibarbis* and *Corynura prothysteres* were only captured for the reference collections. Birds were not captured. AM, Arroyo M inero; AP, Arroyo Pedregoso; LH, Lago Huechulafquen; LQ, Lago Queñi; LT, Lago Tromen; PP; Paso Puyehue; VB, Viuda de Barriga.

Table 3. Proportion of pollen grains from *Embothrium coccineum* in pollen loads carried by the main insect visitors to flowers of *E. coccineum* in Patagonia, Argentina

<table>
<thead>
<tr>
<th>Species</th>
<th>Proportion of grains from E. coccineum in the pollen load (mean ± SD) and (n of loads examined)</th>
<th>Placement of load on insect’s body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corynura sp. 2</td>
<td>0.69 ± 0.28 (11)</td>
<td>Hindlegs, metapleura</td>
</tr>
<tr>
<td>Corynura prothysteres</td>
<td>0.87 ± 0.18 (3)</td>
<td>Ventral part of metasoma, hindlegs</td>
</tr>
<tr>
<td>Trichophthalma niveibarbis</td>
<td>0.77 ± 0.20 (7)</td>
<td>Ventral part of metasoma</td>
</tr>
<tr>
<td>Trichophthalma philippii</td>
<td>0.91 ± 0.08 (5)</td>
<td>Ventral part of metasoma</td>
</tr>
</tbody>
</table>

© 2006 Ecological Society of Australia
disregarded as pollinators either because they seldom touched reproductive structures during their foraging activity (e.g. *Butleria quilla* (Evans)), they were very rarely recorded on flowers (e.g. Ichneumonidae sp.) or they carried pollen tightly packed in their corbiculae (e.g. *Cadeguala occidentalis* (Haliday)) thus rendering pollination unlikely. At LQ, LT and Villa Traful *Elae- nia albiceps* ((D’Orbigny & Lafresnaye), Tyrannidae) was recorded eating fruits of several species, although not foraging on flowers of *E. coccineum*, even though this species has been reported as a frequent pollinator of *E. coccineum* at Chiloé, Chile (Smith-Ramírez & Armesto 1998).

Flower phenology and reward

The flowers of *E. coccineum* remained open from 3 to 5 days, had a mean (range) tube length of 14.06 mm (10.53–18.96; *n* = 103) and a mean (range) nectar volume of 3.35 µL (2.34–3.96; *n* = 124) with a sucrose concentration of 30% (6–62; *n* = 107). Nectar volume did not show any consistent change across the rainfall gradient (*R*² = 0.14, *P* = 0.40). However, sucrose concentration of nectar significantly increased towards the drier sites (*R*² = 0.67, *F*₁,₆ = 10.4, *P* = 0.023; Fig. 2).

We compared our results with data from a population of *E. coccineum* at Isla Grande de Chiloé, Chile (42°30’S 73°35’W; rainfall: 2178 mm; Smith-Ramírez 1993). In all our populations, nectar volume was significantly lower than in Chiloé (mean: 15.6 µL, SD: 11.8, *n* = 69; *P* < 0.05 in all seven Tukey’s HSD tests). Sugar concentration at Chiloé (mean: 10.3, SD: 5.5, *n* = 23) resulted significantly lower than in all our populations (*P* < 0.05 in all seven Tukey’s HSD tests).

DISCUSSION

Nectar sugar concentration increased eastwards with decreasing rainfall (Fig. 2), but nectar volume and flower-tube length showed no geographical trends. A possible explanation for this is that increased water evaporation in the drier populations might stimulate additional nectar secretion (which *E. coccineum* is capable of; Smith-Ramírez & Armesto 1998) leading to a progressive increase in sugar concentration inside the floral tube (Corbet *et al.* 1979; Nicolson & Van Wyk 1998). At the same time, we recorded across the gradient a changing assemblage of flower visitors to *E. coccineum*. The hummingbird *Sephanoides sephan- iodes* and four insect species (*Trichophthalma niveibarbis*, *T. philippii*, *Corynura prothysteres* and *Corynura* sp. 2, were the most common pollinators. Tanglewing flies and hummingbirds were not recorded as floral visitors at the two driest sites, perhaps because of the high viscosity of the sucrose-rich nectar at these populations. However, our analysis suggests that variations in the flower-visitor assemblage of *E. coccineum* are independent of the qualitative change in its nectar rewards. The particular assemblage that visits *E. coccineum* at a given site is a non-random ‘choice’ of the pollinator pool available at that point of the rainfall gradient. The entire pollinator community significantly changes...
across the gradient ‘offering’ fewer flies and more bees towards the drier end (D'evoto et al. 2005). Summarizing, the rainfall gradient influences reward quality apparently through a response of plants to abiotic stress (as suggested by Aizen & Ezcurra 1998) but for E. coccineum reward changes seem uncoupled with assemblage changes (contrary to Aizen & Ezcurra 1998).

Aizen et al. (2002) suggested that the apparent lack of visitation of the passerine Elaenia albiceps to E. coccineum outside the island of Chiloé in Chile might be related to the higher sucrose/hexoses ratio in the nectar of Embothrium on the eastern and western slopes of the Andes as compared with that of Chiloé (Smith-Ramírez & Armesto 1998). Our results suggest this behaviour might also be a consequence of the lower nectar volumes available per flower on the eastern slope of the Andes as compared to Chiloé. The high feeding plasticity of E. albiceps (Smith-Ramírez & Armesto 1998) may allow it to change its preference towards better-rewarding resources. Additional data on the nectar features of E. coccineum from the western slope of the Andes might prove valuable in this regard.

The data we present here are consistent with previous reports (mentioned above) that S. sephaniodes is a major pollinator of E. coccineum on both slopes of the Andes because of its widespread populations and foraging behaviour. His well-studied pollinator has a bill which is long enough (15.58 ± 0.15 mm; n = 29; Fraga et al. 1997) to reach the base of the floral tube (14.06 mm) and has been reported to transport large loads of pollen of E. coccineum on its body (Fraga et al. 1997; Smith-Ramírez & Armesto 1998). The presence of additional bees and tanglewing flies (Nemestrinidae) in the visitor assemblage suggests a mixed bird-insect pollination mechanism for E. coccineum. Several papers report similar cases of typically ornithophilous species (Pleasant & Waser 1985; M acior 1986; M ayfield et al. 2001; Díaz & Cocucci 2003; M edan & M ontaldo 2005; Robertson et al. 2005) where the expected pollinator (a hummingbird) can be outperformed as pollinator by a ‘morphologically unfitting’ visitor (e.g. a bumblebee) in terms of outcross pollen deposited on stigmas or seed production per visit.

The remarkably close fit between the morphology of tanglewing flies and E. coccineum is perplexing given the ornithophilous ‘pollination syndrome’ of the red tubular flowers of E. coccineum. Pollination by tanglewing flies deserves special attention considering that this family is rather primitive among Diptera (Willemein 1987; M ostovsky & M artinez D elclos 2000), and that pollination by this group of flies is a most unusual phenomenon. It has been reported only in southern Africa (M anning & G oldblatt 1997) and southern South America (Angulo 1971; Aizen et al. 2002; D'evoto & M edan 2006), but the biology of tanglewing flies remains widely unknown (Peña 1996). In southern Africa, there is a particular guild of plant species with long-tubed flowers for which the long-proboscid tanglewing flies remain the only true (and highly specialized) pollinators (Goldblatt & M anning 2000). These highly specialized interactions often lead to an increased selective pressure on certain floral traits, such as selection for longer spurs in populations of Disa orchids exerted by the tanglewing fly Moegistorynchus longirostris (Johnson & Steiner 1997). However, the nectar sugar concentration of typical ‘Nemestrinidae flowers’ (20–30% sucrose equivalents; M anning 2004) and that of typical ‘hummingbird flowers’ (c. 20%; Bolten & Feinsinger 1978) are similar and both resemble the features of nectar from E. coccineum (26%). This suggests that in the temperate forests of southern South America, hummingbirds and tanglewing flies likely constitute a true ‘functional group’ of pollinators (sensu Fenster et al. 2004) that would be exerting a coincident selective pressure, at least concerning nectar sugar concentration. In fact, the historical coexistence of tanglewing flies, which differentiated in South America through the Cretaceous period (Bernardi 1973), with Embothrium, which is present in South America at least since the Oligocene (Dusén 1899; Prance & Plana 1998), and the much later appearance of hummingbirds in the early Miocene in Andean Patagonia (Bleiweiss 1998) suggest that ornithophilv in E. coccineum may be a recent acquisition. The ancestral condition was probably pollination by Nemestrinidae (but see Aizen & Ezcurra 1998). Interestingly, a comparative survey of modes of pollination within various plant genera (Grant & Grant 1968) suggested strongly that in the Western North American flora, hummingbird flowers are derived from bee flowers in numerous independent phylectic lines. Admittedly, the evidence presented in this paper in favour of the importance of tanglewing flies as pollinators of E. coccineum still needs to be evaluated through careful field experiments.

ACKNOWLEDGEMENTS

We thank A. Basilio, M. Chamer, G. Gleiser, V. M edan, G. G. Roitman, L. Rossi and J. P. Torretta for help in the field and laboratory. N. H. Bartoloni provided helpful statistical advice. We also thank the following for identifying insect material: A. Roig-Alsina (Apidae), F. C. Thompson (Syrphidae) and E. Schlinger (Acroceridae). An earlier draft of this paper improved from comments by M arcelo A. Aizen and three anonymous reviewers. This work was financed by grants from UBACyT and CONICET. A graduate research scholarship granted by the University of Buenos Aires to M. D. is also gratefully acknowledged. D. M. is affiliated with the CONICET, Argentina.

© 2006 Ecological Society of Australia
REFERENCES

© 2006 Ecological Society of Australia
© 2006 Ecological Society of Australia