

Monitoring forage production with MODIS data for farmers' decision making

and really

Gonzalo Grigera, Martín Oesterheld and Fernando Pacín

IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Lamadrid Farmers' Consortium (CREA)

INTRODUCTION

In grass feeding livestock production systems, seasonal forage production has to be known to rationally set the stocking rate, prevent possible food shortages, and evaluate efficiencies yielded by different management strategies. Farmers do recognize this need, but traditional difficulties in assessing forage production force them to use coarse estimations. We developed a near realtime estimation system of aerial net primary production (ANPP) at a within-paddock level for different forage resources under real-farm conditions. The system is already delivering monthly estimates of ANPP to a consortium of 25 farms summing 29000 ha in SW Buenos Aires province, Argentina (Fig 1).

In this work, we present the basis of that system and its first results.

METHODOLOGY

We derive the fraction of absorbed photosynthetic active radiation (fPAR) from the normalized difference vegetation index (NDVI) for every 250 m MODIS pixel completely included in the paddocks (Fig 1), assuming a non-linear relation between *f*PAR and NDVI (Fig 2; Potter *et al.* 1993). fPAR could take values between 0 (for bare soil) and 0.95 (maximum interception)

Figure 2. Relationship used to derive fPAR from MODIS NDVI

Then, we calculate the absorbed photosynthetic active radiation (APAR) using incoming photosynthetic active radiation measurements from a meteorological station

Carrier Land County

APAR integrates variations in climatic and vegetation conditions (Fig 3) and represents the solar energy effectively conducted to vegetation growth.

Finally, we calculate ANPP using radiation use efficiency (RUE) values empirically estimated for the two principal forage resources: upland sown pastures and lowland naturalized pastures. These calibrations were based on ground measurements of ANPP for 2-month periods between October 2000 and October 2003, and the respective APAR

Figure 3. Averaged pattern of incoming PAR, fPAR and APAR for sown pastures of SW Buenos Aires province.

RESULTS Basis of the system: RUE calibrations

The empirical relation between ANPP and APAR was different between resources (Fig 4) but almost identical among different sites of the same resource. For upland, sown pastures it was ANPP=0.6*APAR+12, (R²=0.86; n=18), and for lowland, naturalized pastures it was ANPP=0.27*APAR+26, (R^2 =0.74; n=18), with ANPP in g/m²/60 days and APAR in MJ/ m²/60 days. These models were used to derive ANPP from APAR.

RESULTS First set of estimations

Patterns of monthly estimates of ANPP from February 2000 through July 2004 showed that upland, sown pastures were much more productive than lowland, naturalized pastures, specially in spring, when usual good climatic conditions allow upland, sown pastures to express their potential rate of growth (Fig 5). Average annual production was 7614 kg/ha for upland, sown pastures, and 4099 kg/ha for lowland, naturalized pastures. However, both forage resources showed a similar seasonal pattern: a peak in spring, a drop through summer, then a year-dependent slight peak in autumn, and a less productive period during winter

ANPP during July 2004, last month, was similar to that in 2003, but relatively low in comparison with the years before (Fig 6).

tes of ANPP from Febrary 2000 gure 5. Monthly estin July 2004 for three di ree differ

ANPP among different paddocks having the same resource also varies considerably (Fig 7).

Figure 7.

oliograp

nowledgemen

2000 2001 2002 2003 2004

CONCLUSIONS

Our first set of estimates was presented to the farmers for them to compare with their own perceptions of relative differences among paddocks. In this sense, farmers found the estimates very good. They found particularly valuable the information that our system provided on inter-paddock production differences, the rate of production decline with pasture age, which allows them to make decision on rotations, and the range of production variation associated with particular climatic events.

In the near future, we expect to improve the accuracy and reduce the local component of our system by incorporating a more mechanistic approach for the estimation of RUE. We also face the challenge of incorporating this novel, finescale monitoring of ANPP into the decisional framework of these farmers.

1000