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Abstract 29 

An individual tree model with additive direct and competition effects is introduced to account for 30 

competitive effects in forest genetics evaluation. The mixed linear model includes fixed effects as 31 

well as direct and competition breeding values plus permanent environmental effects. 32 

Competition effects, either additive or environmental, are identified in the phenotype of a 33 

competitor tree by means of ‘intensity of competition’ elements (IC), which are non-zero 34 

elements of the incidence matrix of the additive competition effects. The ICs are inverse function 35 

of the distance and the number of competing individuals, either row-column wise or diagonally. 36 

The ICs allow standardization of the variance of competition effects in the phenotypic variance of 37 

any individual tree, so that the model accounts for unequal number of neighbors. Expressions are 38 

obtained for the bias in estimating additive variance using the covariance between half-sibs, when 39 

ignoring competition effects for row-plot designs and for single-tree plot designs. A data set of 40 

loblolly pines on growth at breast height is used to estimate the additive variances of direct and 41 

competition effects, the covariance between both effects, and the variance of permanent 42 

environmental effects using a Bayesian method via Gibbs sampling and Restricted Maximum 43 

Likelihood procedures (REML) via the Expectation-Maximization (EM) algorithm. No problem 44 

of convergence was detected with the model and ICs used when compared to what has been 45 

reported in the animal breeding literature for such models. Posterior means (standard error) of the 46 

estimated parameters were 
A
ˆ

d

2σ = 12.553 (1.447), 
A
ˆ

c

2σ = 1.259 (0.259), A A
ˆ

d cσ = −3.126 (0.492), 47 

ˆ
p

2σ = 1.186 (0.289), and ˆ e
2σ = 5.819 (1.07). Leaving permanent environmental competition effects 48 

out of the model may bias the predictions of direct breeding values. Results suggest that selection 49 

for increasing direct growth while keeping a low level of competition is feasible. 50 



Introduction 51 

The additive genetic variance is a parameter of uttermost importance in the genetic 52 

improvement of forest trees as it affects the gain and the precision of selection. In order to avoid 53 

bias when estimating additive variance, the statistical model of analysis should include all other 54 

sources of genetic variation as well as all identifiable environmental effects. Tree competition for 55 

resources may bias breeding value estimation from competing individuals (see for example, 56 

Magnussen, 1993; Foster et al., 1998; Radtke et al., 2003) by inducing a negative correlation 57 

between either individual trees or neighbor plots. Competition is defined as the stress suffered by 58 

a plant due to the genotype and the spatial arrangement of neighboring trees (Hinson and Hanson, 59 

1962), and is caused by genetic and environmental sources (Magnussen, 1989). Usually genetics 60 

effects of competition are not accounted for in the model of evaluation in spite of evidence of 61 

their existence (see the references in the discussion of Magnussen, 1993 and Foster et al., 1998). 62 

Cannell (1978) suggested selecting for non-competitive genotypes in order to increase yield per 63 

unit of area in forest trees. This breeding strategy is most effective if direct effects for growth are 64 

negatively correlated to competition effects. In this scenario, plants with a large genetic potential 65 

for growth tend to induce less competition, so that tree density may be increased and, as a result 66 

of both increases, the yield per unit area would be augmented. On the other hand, if the 67 

correlation between direct and competition effects is positive, selection for higher growth will 68 

result in more competitive individuals. As a consequence, total yield per unit area may be 69 

affected as the faster growing individuals would hinder the growth of their neighbors, which in 70 

turn would decrease total production. Inclusion of genetic effects of competition results in an 71 

increased number of additive dispersion parameters in the model of genetic evaluation compared 72 

with those models where competition effects are absent. 73 



In a series of papers, Griffing (1967, 1968a, 1968b) described models that include genetic 74 

effects of competition among individuals or groups of individuals, and analyzed the consequences 75 

of using such models for the response to selection. In these models, the phenotype of an 76 

individual is a linear combination of its genetic effects (“direct genetic effects”) plus the genetic 77 

contributions from other genotypes (“indirect genetic effects”). Whereas direct genetic effects are 78 

expressed in the phenotype of an individual, indirect genetic effects are expressed only in the 79 

phenotype of another individual. A common example of indirect effects is the maternal effect in 80 

mammals (Willham, 1963; Lynch and Walsh, 1998, chapter 23), which is expressed in the 81 

offspring from birth to weaning. When looking at the genetic evaluation of trees, competition is 82 

an indirect genetic effect. Wright (1986) obtained expressions for the covariance between 83 

relatives in the model of Griffing (1967), including additive, dominance and epistasis, for direct 84 

and competition effects. For a single trait individual tree model, 22 genetic (co)variance 85 

components have to be estimated: 3 for additive effects, 3 for dominance effects, and 16 for 86 

epistatic effects. Attempting to fit a model with all 22 parameters to data with the usual family 87 

relationships (full and half-sibs) commonly found in trees seems to be hopeless. Instead, it may 88 

be feasible to fit additive effects, as it requires estimating only three (co)variance components 89 

plus the error term. Muir and Schinckel (2002) described an animal model with direct and 90 

competitive effects. Van Vleck and Cassady (2005) used simulation and a fixed number of 91 

competitors, to determine whether Restricted Maximum Likelihood (REML, Patterson and 92 

Thompson, 1971) with relationships could untangle the covariance structure of direct and 93 

competition genetic variances and the covariance between them, whereas Arango et al. (2005) 94 

attempted to estimate the three (co)variance components to a swine population during a growth 95 

test. The results of both studies suggest that the additive relationships among competing 96 

individuals present in the data may be essential in disentangling the information to estimate the 97 



(co)variance components. Muir (2005) wrote down the mixed model equations with competition 98 

effects to analyze forest tree data, but he ignored the consequences of a variable number of 99 

competitors (due for example to mortality or thinning) on estimating the additive genetic variance 100 

for competition. All in all, when fitting a model with competition effects it is essential to report a 101 

measure of the variability of the estimates of the dispersion parameters. 102 

A shortcoming of REML is that the variability of estimation has to be measured 103 

approximately using large sample theory by means of the inverse of the information matrix from 104 

the marginal or restricted likelihood, as there is no analytic solution for the variance of the 105 

estimating equations: there is no exact sampling distribution for the REML estimators. From a 106 

Bayesian perspective REML can be seen as the mode of the joint posterior distribution of all 107 

(co)variance components after integrating out the fixed effects using a flat prior for the dispersion 108 

parameters (Harville, 1974). Alternatively, a full Bayesian approach by means of the Gibbs 109 

sampler can be attempted for estimating the (co)variance components for additive direct and 110 

indirect effects, by exploiting the similarity with the model of maternal effects (Sorensen and 111 

Gianola, 2002, section 13.3). The basics of the Gibbs sampling is discussed by Casella and 112 

George (1992), whereas Soria et al. (1998), Gwaze and Woolliams (2001), Zeng et al. (2004) and 113 

Cappa and Cantet (2006) developed some applications of the sampler to the genetic improvement 114 

of forest trees. The goals of this research are: 1) to introduce an additive genetic individual tree 115 

model that includes direct and competition effects, accounting for the number and position of 116 

competitor trees; 2) to estimates the dispersion parameters of the model (additive variances for 117 

direct and competition effects, and the covariance between both effects) using a Bayesian 118 

approach by means of the Gibbs sampler. Developments are illustrated with data on the diameter 119 

at breast height in Pinus taeda L. at 13 years of age. 120 

 121 



The model 122 

Breeding values for direct and competition effects.  123 

 Consider a trait mostly affected by additive genetic effects, with a direct and a 124 

competition component (Wright, 1986). The dynamics of the joint genetic variability for additive 125 

effects with an indirect component has been developed by Willham (1963) for maternal effects, 126 

and more generally discussed by Wolf (2003) within an evolutionary framework. Let the direct 127 

component of the breeding value for individual i be adi, and let the competition breeding value be 128 

aci. The greater the magnitude of aci the higher the competition effects exerted by tree i. The 129 

phenotypic record of tree i (yij1..jm) is affected by the acj‘s of neighbor trees j (j = j1, j2,…, jm), in a 130 

similar fashion to maternal effects which are expressed in the progeny’s phenotype. Thus, yij1..jmi 131 

depends on the acj of its neighbors but not on its own aci. As an individual tree suffers 132 

competition from more than a neighbor, let mi be the number of competitors of the i
th
 tree. For 133 

plantations in a regular grid, the maximum value mi can take is 8. The assumption is that any tree 134 

does not compete with other trees than its nearest neighbors (see Figure 1). The notation R-C 135 

indicates that the competitor lies, either in the same row or in the same column, and is represented 136 

with the symbol ‘↔ ’ in Figure 1. In the same way, the letter D refers to competitors that lie 137 

diagonal, and these are represented with the diagonal arrows in Figure 1. To exemplify, in Figure 138 

1 the R-C competitors of tree 5 are plants 2, 4, 6 and 8, whereas individuals 1, 3, 7 and 9 are D 139 

competitors of 5. 140 

[Insert Figure 1 about here] 141 

The total additive genetic competition that is exerted over plant i from trees j1, j2, …,, jmi is 142 

equal to 143 



1 21 2

1

...
i

m j

m

i c i c im c ij c

j

f f f f
=

+ + + =∑a a a a     [1] 144 

The element fij is interpreted as the intensity of competition (IC) that acj (j = j1, j2,…, jm) exerts 145 

over the phenotype of the i
th
 neighbor tree (yij1..jm). To obtain the IC values, consideration should 146 

be given to the fact that, in the absence of inbreeding and of genetic relationships among 147 

competitors and regardless of the number of competitors, 148 

Ac

1

Var
i

j

m

ij c

j

f
=

 
= 

 
∑ a

2σ       [2] 149 

where Ac

2σ  is the additive variance for competition breeding values. This implies that the 150 

potential genetic strength for competing with the neighbors, i.e. ac, is split proportionally to mi. 151 

Let fijR-C be the IC in [1] for R-C and fijD for D competitors to i. Also, let nR-C and nD be the 152 

respective numbers of R-C and D competitors, and nR-C + nD = mi. Under all these premises, and 153 

on using the variance operator in [2], we obtain  154 

( )2 2 2

R-C R-C D D A A
11

Var
i

i

j

m m

ij c ij ij c ijk c
jj

f n f n f f
==

   = + = ∑   
  

∑ a
2 2σ σ    [3] 155 

where k = R-C or D. By equating [2] to [3], the ICs are such that 156 

2 2 2

R-C R-C D D
1

1
im

ijk ij ij
j

f n f n f
=

= + =∑     [4] 157 

Now, it seems reasonable to assume that in trees IC is related to the inverse of the distance 158 

between i and j (i.e. Radtke et al., 2003). If d is the regular spacing of the planting design, for R-159 

C competitors the IC is proportional to 1/d. However, the distance of a tree located diagonal to i 160 

is 2
1/2 
d by the Pythagorean theorem, so that competition is proportional to 1/(2

1/2
 d) for D 161 

competitors. Now, fijR-C = 1/d and fijD = 1/(2
1/2
 d). On solving for d in both equalities we get d = 1/ 162 

fijR-C  and d =1/ fijD2
1/2
. Next is to equate the resulting expressions so as to obtain  163 



D R-C2 =ij ijf f       [5] 164 

Finally, by replacing with [5] in [4] and solving for fijD and fijR-C produces 165 

2 2

R-C D D D2 1ij ijn f n f+ =   or  ( ) 2

R-C D D2 1ijn n f+ =  166 

Thus 167 

D

R-C D

1
= 

2
ijf

n n+
     [6] 168 

A similar argument is used to obtain 169 

R-C

R-C D

2
= 

2
ijf

n n+
     [7] 170 

Notice that fij is not necessarily equal to fji as i and j may have different number of competitors. 171 

An interesting feature of expressions [6] and [7] is that the intensity factors end up being 172 

independent on the distance d. The reason is that in row-column arrays there is a relation between 173 

the RC-distance and the D-distance based on the theorem of Pythagoras, and the value of d 174 

cancels out when obtaining [5]. This approach can be simply extended to planting designs when 175 

the distance between rows and columns is not the same, i.e. when dRow ≠  dColumn. 176 

Griffing (1967) and Wright (1986) observed that the covariance between adi and aci from 177 

the i-th tree is equal to: 178 

( ) A Acov ,
i jd c ij d c=a a A σ  179 

where Aij is the additive genetic relationship between tree i and its j neighbor, and A Ad cσ  is the 180 

covariance between direct and competition breeding values. Moreover, as the genetic model is 181 

exclusively an additive one, we have that 182 

( ) ( ) ( ) ( )A AVar 1 Var 1
i jd i d c j cF F2 2= + = +a aσ σ  183 



(Kempthorne, 1969; page 349). In this expression, Fi and Fj are the inbreeding coefficients of i 184 

and j, respectively; Ad

2σ is the additive variance for direct effect. In terms of the covariance matrix 185 

of breeding values we have 186 

( )
( )

A A A

A A A

1
Var

1

i

j

d i d ij d c

c ij d c j c

F

F

2

2

 + 
=   

+     

a A

a A

σ σ

σ σ
 187 

Additive individual tree mixed model with direct and competition breeding values 188 

On inserting [1] into an additive individual tree model (Borralho, 1995) for the record of 189 

tree i competing with neighbors j1, j2, …,, jm produces 190 

( )1.. . 1..

1

i

m mi j j

m

ij j i d ij c c ij j

j

y f e
=

= + + + +∑X a a pββββ     [8] 191 

In [8], yij1..jm  is the phenotype of i (i = 1, ...., n; n is the total number of trees with data recorded). 192 

The p × 1 vector β contains fixed effects such as site or block, and is associated to the data by the 193 

i
th
 row of the incidence matrix X (n × p). The breeding values adi and acj and the fij are as defined 194 

above. Model [8] includes permanent environmental effects through the random variable pcj, so 195 

that acj + pcj is the phenotypic effect of competitor j over the phenotype of i (Muir, 2005).  196 

Finally, eij1..jm is the random error term. 197 

The variance of 
1.. .mij jy  in [8] is equal to 198 

( ) ( )1.. . 1..

1 1

Var Var Var Var
i i

m mi j j

m m

ij j d ij c ij c ij j

j j

y f f e
= =

   
= + + +   

   
∑ ∑a a p   199 

where the first variance is for the additive effects, the second one for the permanent 200 

environmental effects, and the remaining one for the error. It is shown in the Appendix that total 201 

additive variance in model [8] is equal to 202 



( ) ( )( )
1R C 1D

2 2

A R C D ´ A A A

1 ' 1

Var 1 1 2 2
i i i

i j i i

m m m

d ijk c i d j ij'k imk jj c ijk ij d c

j j j j

f a F n f n f F f f f
−

2 2
−

= ≠ =

   
+ = + σ + + + + σ + σ   

   
∑ ∑ ∑a A A203 

 [9] 204 

When: 1) all individuals are not inbred (Fi = Fj = 0), 2) tree i is unrelated to its competitors (Aij = 205 

0, for all j), and 3) the competitors are unrelated among themselves (Ajj’ = 0), expression [9] 206 

reduces to A Ad c

2 2+σ σ . 207 

In matrix notation, the individual tree model [8] is   208 

d d c c p c= + + + +βy X Z a Z a Z p e       [10] 209 

where y = [yij1..jm] (n × 1) contains the data; X is the n × p incidence matrix relating records to the 210 

vector of fixed effects ββββ,  pc is a vector such that  pc = [pcj] j = 1, ..., n, such that pc ~ Nn (0, In 2

pσ ),  211 

and e (n × 1) is the random vector of i.i.d. errors distributed as Nn (0, In σ2e), being σ2e the error 212 

variance. Direct breeding values are included in the random vector ad = [adi] and competition 213 

breeding values are in ac = [aci]. The same q individuals having direct breeding values in ad are 214 

also in ac, and in the same order. Direct and competition breeding values are related to y by the n 215 

× q incidence matrices Zd and Zc, respectively. Every row of Zd has all elements equal to 0 except 216 

for a 1 in the column belonging to adi. Similarly, matrix Zc has rows with 0 elements but the fij ‘s 217 

in the columns for the acj of the mi competitors of tree i. To exemplify, suppose that in Figure 1 218 

there is a missing plant in position 3. The row of Zc relating the record of 5 (i = 5) to its 219 

competitors is Zc5 = 2 2 2 21 1 10
11 11 11 11 11 11 11

 
  

, were the columns are related to 220 

the competition breeding values of trees 1, 2, 4, 5, 6, 7, 8, and 9. As plant 3 is missing, its 221 

competition breeding value is not included in ac. Also the direct breeding values will not be in ad. 222 

Using [7] results in f5jR-C = [2/(2*4 + 3)]
1/2
 = 2

11
 for R-C trees 2, 4, 6 and 8, whereas using [6] 223 



produces  f5jD = 1/ [2*4 + 3]
1/2
 = 1

11
 for D trees 1, 7 and 9. The 0 in the fourth column reflects 224 

that the competition breeding value of 5 is not related to its own record. Matrix Zp is composed of 225 

the non-zero columns of Zc and has order equal to n × n. 226 

The covariance matrix of ad is Aσ2Ad. The q × q matrix A = [Aij] has diagonal elements 227 

equal to 1 + Fi, and off-diagonals equal to the additive relationships Aij. Also, ac ~ (0, Aσ2Ac) and 228 

cov (ad, ac) = AσAdAc. Now, we are able to write the total additive covariance matrix in a more 229 

compact manner as follows 230 

A A A

0

A A A

Var
d d d c

c d c c

2

2

  
= ⊗ = ⊗  

   

a
A G A

a

σ σ
σ σ

 231 

 Taking into account the random effects in model [10], the (co)variance matrix (V) of y is 232 

given by: 233 

( )2 2 2

A A A A

2

d d d d c c d d c c c c p p p n e= + + + + +´ ´ ´ ´ ´
V Z AZ Z AZ Z AZ Z AZ Z Z Iσ σ σ σ σ   [11] 234 

Bayesian estimation of (co)variance components  235 

 As in Soria et al. (1998), Gwaze and Woolliams (2001), Zeng et al. (2004) and Cappa and 236 

Cantet (2006), we will estimate the dispersion parameters σ2Ad, σAdAc, σ2Ac, 2

pσ and σ2e using a 237 

Bayesian approach by means of Gibbs sampling (Sorensen and Gianola, 2002).  Under normality 238 

of breeding values and errors, the conditional likelihood of the observed data can be written as 239 

being proportional to: 240 

( )
( ) ( ) ( )2

2 2

12 2

2

, , , , , ,

'exp
e

c d c p e

n

e d d c c p c d d c c p c

p

−
−

| ∝

 − − − − − − − −  

β

β β

0y a a p G

y X Z a Z a Z p y X Z a Z a Z p
σ

σ σ

σ
  [12] 241 

Conjugate prior densities are chosen for all parameters. In order to reflect a prior state of 242 

uncertainty for the fixed effects and to obtain a proper posterior distribution (Hobert and Casella, 243 



1996), we take β ~ Np (0, K). Matrix K is diagonal with large elements (kii >10
8
). Also, the joint 244 

prior distribution of the direct and competition breeding values (ad, ac) is 245 

0 0
, , ~ ,

d

c

N
    

⊗    
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a 0
A G G A

a 0
  246 

On defining a = [ad´, ac´]´, the corresponding density can be written as 247 

( ( )1 12
0 0

0

1
exp '

2

q

p
− − − | , ) ∝   − ⊗ 

 
a A G G a G A a    [13] 248 

Let 249 

1 1

1 1

' '
d d c d

g
' '
d c c c

 − −
 
 
 − −
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a A a a A a

S
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 250 

Then 251 

( ) 1 1
1 1 1

0 01 1
' ' tr

' '
dd d c d

d c g
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cd c c c

 − −
 − − − 
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 252 

Therefore, [13] can be expressed as 253 

 ( ) ( )12
0 0 0

1
exp tr

2

q

gp
−

− | , ∝   − 
 

a AG G G S     [14] 254 

A priori the permanent environmental effects are distributed as pc ~ Nn (0, 
2

pσ In): 255 

( ( )2 2 2
22

'
exp

n

c c
c p p

p

p
σ

 |σ )∝ σ − 
 

 p p
p     [15] 256 

The matrix of the additive (co)variance components G0 follows a priori an Inverted 257 

Wishart (IW) density: G0 ~ IW (
*

0G , υg) where 
*

0G  is the prior covariance matrix and υg are the 258 

degrees of freedom. Thus:  259 

( ) ( ){ }* 1
0 0 0 0

( 3)
12, exp tr
2

g

g gp −

υ +−
| υ ∝   −G S G G G    [16] 260 



A priori the permanent environmental variance has as a scaled inverted χ2 density so that: 261 

( ) ( )
1
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S
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p p p p
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p
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σ
σ

    [17] 262 

with ‘hyperparameters’ pυ , the ‘degree of belief’ and 
2Sp the hypervariance. Finally, and 263 

following the approach of Jensen et al. (1994), the residual variance is assumed to follow a priori 264 

a scaled inverted χ2 with density proportional to: 265 

( ) ( )
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S
S exp

2

e

e e
e e e e

e

p
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σ
σ

    [18] 266 

where eυ  and 
2Se  are the ‘hyperparameters’. 267 

 Multiplying [12] with [14], [15], [16], [17], and [18], produces the joint posterior density 268 

for all parameters, and this is proportional to 269 

( )
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  [19] 271 

 Sorensen and Gianola (2002, page 575) gave the posterior distribution for all parameters 272 

of maternal models. On expanding their model to include permanent competition effects, the 273 

posterior conditional density for the Gibbs sampling of β , da , 
ca  and cp is equal to 274 
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where 
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e
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k k
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= G σ , and β̂ , ˆda , ˆ
c
a and ˆ

c
p are the solutions of the following system of 276 



equations 277 
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Expression [20] may suggest that sampling of β , da , 
ca and cp is in block. However, it is simpler 279 

to sample the elements of those vectors individually, as discussed by Sorensen and Gianola 280 

(2002, page 566, expressions (13.11) and (13.12)), which was the way it was done in the current 281 

research.  282 

 Collecting the second and third terms in the right of [19], the full conditional posterior 283 

distribution of G0 is equal to 284 

 ( ) ( ){ }
( )

1 *2 2 2
0 0 0 0

1
, , , , , , exp tr

2

q
g

c d c p e gp

υ + + 3
− −| ∝   −βG a a p y G G S +Gσ σ    [21] 285 

Expression [21] is the kernel of a 2 × 2 scaled inverted Wishart distribution, with degrees of 286 

freedom equal to (
gυ + q + 3) and scale matrix *

0gS + G . 287 

For the permanent error variance, the full conditional posterior distribution is 288 
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   [22] 289 

which is a scaled inverted χ2 density with p pn+υ = υɶ degrees of freedom and scale parameter 290 

( )
( )

2

2
´c c

n

+ υ δδ = υ +
ɶ p p

p

p

p p
.  291 

 Finally, the full conditional posterior density of the residual variance is proportional to 292 
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which is a scaled inverted χ2 density with n+υ = υɶ
e e

degrees of freedom and scale parameter 294 

( )
( )

2

2
´

n
+ υ δδ = υ +

ɶ e e

e
e

e e
.  295 

At each iteration, the Gibbs algorithm proceeds by first sampling β , da , ca and cp from 296 

[20], then σ2e from [23], 2σ p from [22], and finally σ
2
Ad, σAdAc and σ2Ac from  [21]. A program 297 

was written in FORTRAN to perform all these calculations with the data and model described 298 

below. 299 

 300 

An application to Loblolly pines 301 

Data 302 

An additive individual tree mixed model with direct and competition breeding values was 303 

applied to a progeny data set derived from 20 open-pollinated families of Loblolly pine (Pinus 304 

taeda L.), originated from Marion (Florida, USA) and belonging to CIEF (Forestry Research and 305 

Experimentation Centre). Five lots of commercial seeds were used as control populations. The 306 

trait analyzed was diameter at breast height (1.3 m, DBH) measured at age 13 from 932 trees. The 307 

trial site was located in Villa Olivari (lat. 27º 36' S long. 56º 55' W), northern Corrientes province 308 

Argentina, where soils are deep, sandy, yellowish and quartzous. Families were arranged in 309 

randomized complete blocks, with eight replicates of 5 trees in line per plot, and the spacing was 310 

3.5 m × 3.5 m. The data available are summarized in Table 1.  311 

[Insert Table 1 about here] 312 



Model and posterior inference 313 

 Besides ad, ac and pc, the individual tree model included a vector β  with 8 block effects. 314 

The order of Zd and Zc was 932 × 957, and of Zp was 932 × 932. Whenever a tree had all 8 315 

neighbor competitors, nR-C = nD = 4. On replacing with these values into [7] and [6] produces the 316 

non-zero elements of Zc: fijR-C = [2/(2*4 + 4)]
1/2
 = 1

6
 and fijD = 1/ [2*4 + 4]

1/2
 = 1

12
.  317 

 As there no other estimates of σAdAc and σ2Ac, several Markov chains with different prior 318 

values of σAdAc (+, 0, and −) and of σ2Ac (high and low relative to σ2Ad) were run. Results were 319 

quite similar so the chain with the best convergence properties was used to estimate the 320 

(co)variance components. The prior variance for 2

pσ  ( 2δ
p
) was chosen to be equal to the prior 321 

value for σ2Ac. A single Gibbs chain of 1 010 000 samples each were drawn as discussed above, 322 

and the first 10000 iterates were discarded due to burn-in. The autocorrelations were calculated 323 

with “Bayesian Output Análisis” (BOA version 1.0.1, Smith 2003) for all lags from 1 to 100. To 324 

account for the impact of autocorrelations in the chain on measures of variability, posterior 325 

standard errors of each parameter were corrected for an ‘effective sample size’ (ESS, Neal in 326 

Kass et al., 1998), which was calculated as: 327 

( )
100

1

1000000
ESS

1 2
i

i
=

=
+ ρ∑

   328 

where ( )iρ  is the autocorrelation measured at lag i. The marginal posterior densities for all 329 

parameters were estimated using the Gaussian kernel method (Silverman, 1986; chapter 2): 330 

( )
210000

1

1 1 1
exp

10000 22

i

i

z
f

h h=

 − θ θ = −  π    
∑    [24] 331 



where ( )f θ  is the estimated posterior density, 2i (i =1,..., 10 000) is a sampled value and h is the 332 

window width estimated by cross-validation. The basic idea of this procedure is to withdraw one 333 

observation at a time and estimate the density. After repeating the procedure n times the average 334 

of the logs of the estimated densities is maximized with respect to h. Further details can be 335 

consulted in Silverman (1986, section 3.4.4). The procedure is implemented in the function 336 

density within the free-software R (http://www.r-project.org/). Mean, mode, median, standard 337 

deviation (SD), and 95% high posterior density interval (95% HPD), were obtained with BOA for 338 

all parameters from the individual marginal posteriors, under R. 339 

 340 

Results 341 

Posterior statistics for Ad

2σ , Ac

2σ , A Ad cr ,
p

2σ  and e

2σ are shown in Table 2. For all parameters 342 

posterior means and medians were quite similar, whereas the modes were somewhat smaller.  343 

Therefore, the marginal posterior distributions were slightly right skewed (Figure 2). The 344 

marginal posterior means and SDs of Ad

2σ and Ac

2σ were respectively equal to 12.553 and 1.259, 345 

and 1.447 and 0.259. The marginal posterior mean of A Ad cr was moderate to large and negative –346 

0.788 and the SD was 0.056. The posterior means of p

2σ and e

2σ were equal to 1.186 and 5.819, 347 

respectively, and their SDs were 0.289 and 1.070. None of the 95% HPD for Ad

2σ , Ac

2σ , A Ad cr , 348 

p

2σ , or e

2σ  included 0, which suggests that these parameters are different from zero.  349 

[Insert Table 2 about here] 350 

 [Insert Figure 2 about here] 351 



Discussion 352 

 It has been observed that competition among trees may bias the estimated breeding value 353 

of a plant from those of its competitors (Magnussen, 1993; Foster et al., 1998; Radtke et al., 354 

2003, among others). In the current research, we presented an individual tree mixed model that 355 

allows disentangling breeding values for direct and competition effects and estimating their 356 

variances plus the covariance between both effects, as well as the variance of permanent 357 

environmental competition effects. Estimation of the dispersion parameters was accomplished 358 

using a Bayesian method with the Gibbs sampler originally proposed by Jensen et al. (1994) for 359 

maternal effects in animals. For direct and competition effects, Van Vleck and Cassady (2005), 360 

Arango et al. (2005) and Muir (2005) estimated the (co)variance components by REML. We did 361 

not find problems of convergence and sensitivity to starting values, as reported by Van Vleck and 362 

Cassady (2005) and Arango et al. (2005) when estimating the competitive (co)variance 363 

components. It is unlikely that the difference in performance is due to the use of a different 364 

method of estimation, but to different amount of information on competitive effects for forest 365 

trees compared with animals. In trees, each individual may be competing with 8 others at 366 

different intensities (see [6] and [7]), as compared with animal breeding data for individuals 367 

managed in common pens where all ICs are equal. This informativeness of the IC through matrix 368 

Zc allowed estimating additive effects of competition and permanent environmental competitive 369 

effects. 370 

Posterior means of the (co)variance components for a model without permanent 371 

environmental competitive effects were 
A
ˆ

d

2σ = 13.527, 
A
ˆ

c

2σ = 1.488, 
A A
ˆ
d cr = −0.659, and ˆ

e

2σ = 372 

5.417. Notice that the estimate of 
Ad

2σ  was larger (13.527 vs. 12.553) and the estimate of e

2σ  was 373 

smaller (5.417 vs. 5.819) than when permanent environmental competitive effects were fitted. 374 



This may suggest that leaving those environmental effects out of the model may bias the 375 

predictions of direct breeding values. A possible evidence of this bias is that the predictions of 376 

permanent environmental competition effects of trees having less than 8 competitors (for 377 

example, those plants nearby a site without a tree) were almost a quarter of a standard deviation 378 

larger than the same effects but for trees having all 8 competitors. Thus, the presence of dead 379 

trees promotes a less stressful environment for the surrounding plants that may bias the prediction 380 

of direct breeding values, if permanent environmental effects are not accounted for in the model.    381 

As expression [9] shows, ignoring the number of competitors, the additive relationships 382 

between the individual with the competitors, and the relationships among the competitors 383 

themselves results in biased estimates of the dispersion parameters. Arango et al. (2005) 384 

accounted for different number of competitors by including the covariable 1/n or 1
n
, whereas 385 

Van Vleck and Cassady (2005) did not account for a variable number of competitors. As progeny 386 

tests in forest trees last several years, mortality or tree stand failure are quite common, and this 387 

results in variable number of competitors. We accounted for unequal number of neighbors (mi < 388 

8) for either mortality or border location by adjusting fijk so that always 389 

2 2 2

R-C R-C D D
1

1
m

ijk ij ij
j

f n f n f
=

= + =∑ . We also accounted for the additive relationships between any tree 390 

and its competitors and among the competitors themselves. Van Vleck and Cassady (2005) did 391 

not account for additive relationships between individuals in the management unit, which bias the 392 

estimation of
Ac

2σ .  393 

An individual tree model that includes directs and competition breeding values, taking 394 

into account a variable number of competitors and the relationships among all trees, allows 395 

different selection goals and schemes which capitalizes on (or attenuates) the impact of 396 

competition effects. Compared to a model with direct breeding values, the application of the 397 



model discussed here to forest breeding data requires only the positions (row and column) of all 398 

the trees in the trial. The estimated value of 
Ad

2σ  was almost ten times higher than the magnitude 399 

of
Ac

2σ , whereas the magnitude of the genetic correlation between direct and competitive effects 400 

was sizable (−0.788). Therefore, selecting for high direct effects and low competitive effects to 401 

increase the yield per unit area is facilitated for a relatively high negative correlation between 402 

both types of effects.  403 

Of further note is the fact that ignoring competitive effects would result in biased 404 

estimates of the additive variance ( Ad

2σ ). To specify the covariance between relatives in the 405 

additive model two individuals (x and y) are required. If indirect effects are involved more 406 

individuals are needed. For example, the covariance between relatives with maternal effects 407 

requires four animals (x, y, and respective dams w and z), and up to 18 individuals have to be 408 

considered in the additive model with competition effects in [8]: x and its competitors w1, …, w8, 409 

and y and its competitors z1, …, z8. On applying the covariance operator on the additive effects of 410 

model [8] results in the following expression for the genetic covariance between the records of x 411 

and y 412 
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8 8
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   [25] 413 

Expression [25] is of general form and parameters are associated to additive relationships 414 

between individuals in the following way: 
Ad

2σ with x and y; the covariance
A Ad cσ with the 415 

relationships between the individual x (y) and competitors wi (zj), and Ac

2σ is associated with the 416 



relationships among the members of both groups of competitors. To get further insight into the 417 

model with competition consider the situation where x and y are direct competitors. 418 

Schematically 419 

1 2 1 3 2 3

4 4 5 5

6 7 6 8 7 8

w w z w z z

w z w z

w w z w z z

• • = • = •
• • = • = •
• • = • = •

x y  420 

Trees x and y are in the center, surrounded by their respective competitors w1, …, w8, z1, …, z7, 421 

and z8. Notice that 6 individuals are common competitors, implying that w2 = z1, x = z4, and so on. 422 

Expression [25] is now equal to 423 

( ) ( )

( )

8 8

1 1

7 7

A A A

1 1

A

cov ,

1 1

1

i i j j

i i j j

i j i i j i j

i j i j

d w cw d z c z

i j

d w w z z d c

i j

w w w w z c

w z w z

f f

f F f F f f

f f F f f

= =

2

= =

2

= ≠

 
+ + 

 

 
= + + + + + + + 

 

 
+ + +  
 

∑ ∑

∑ ∑

∑ ∑

x x y y

xy xy y yx x y y x x

x yz x yz

a a a a

A A A

A

σ σ

σ

 [26] 424 

Alternatively, if x and y are distant from each other the scheme is as follows 425 

1 2 3 1 2 3

4 5 4 5

6 7 8 6 7 8

w w w z z z

w w z z

w w w z z z

• • • • • •
• • • • • •
• • • • • •

⋯

⋯

⋯

x y  426 

The dots (…) in the scheme stress the fact that trees are separated by at least a column, or they 427 

may be even positioned in totally different rows, or in any other position within the trial. The 428 

covariance in [25] reduces to 429 

8 8
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8 8 8 8
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  [27] 430 



Formula [26] may be applied to row-plot designs where related individuals are planted nearby, an 431 

example of which is the structure in the data set analyzed in the current research. On the other 432 

hand, expression [27] is associated with single-tree plot designs where individuals of the same 433 

family are positioned distant to each other. Consider the estimation of heritability in a single-tree 434 

plot design using half-sib families. The additive variance will be estimated as 4 times the 435 

covariance between half-sibs, i.e. the variance between mothers. Trees x and y have a relationship 436 

equal to Axy = ¼ and are distant to each other, and this defines the first term in [27]. In order for 437 

the covariance between half-sibs to be an unbiased estimator of the additive variance, all terms 438 

related with A Ad cσ and Ac

2σ should be equal to zero. The second term will be null as long as 439 

competitors of any individual (x, say) are unrelated with a distant half-sib (y). However, it is 440 

unlikely that all competitors of any plant x are unrelated to the competitors of all possible y, and 441 

this will introduce bias in the estimation of additive variance. All sources of variation and 442 

covariation that are not accounted for the covariance between half-sibs will fall into the error 443 

term. Of particular interest is the covariance between any two unrelated and distant individuals x 444 

and y. It is most likely that the second and third terms in [27] are not zero as some x’s are related 445 

to any of the z-competitors, or some y’s are related to any of the w-competitors, or some w-446 

competitors are related to any of the z-competitors. Any of these covariances will go into the error 447 

and will bias the error variance upwards. Therefore, even if the bias on the additive variance is 448 

small, the estimate of heritability will be affected as the error variance is most likely biased. 449 

However, the direction and magnitude of the bias will depend on the sign and the magnitude of 450 

A Ad cσ as compared with the magnitude of 
Ac

2σ . In comparison, in data structures where related 451 

individuals are next to each other and competing such as in the row-plot field design, the 452 

covariance between half-sibs will be more affected than in the case of the single-tree plot. This is 453 



due to the fact that the third term in [26] will not be null as the competitors of x are related to the 454 

competitors of y, being many times the same individuals (x = z4, y = w5 ). Also the second term in 455 

[26] will not be zero as when looking at the covariance between x and the competitors of y (or y 456 

and the competitors of x), x is also a competitor of y and y a competitor of x. Hence, fxy and fyx are 457 

not zero. For the error variance we will look at the covariance between unrelated individuals (Axy 458 

= 0) that are either competing or distant. As in the case of single-tree plot, in the row-plot design 459 

the error variance will also be affected, as the second and third terms in [26] will not be zero: any 460 

pair of unrelated x and y will have relatives competing to the other individual in the pair, i.e. there 461 

will be z-competitors related to x, w-competitors related to y, and z-competitors related to w-462 

competitors. The size of the bias when estimating the additive and error variances will depend on 463 

the sign and the magnitude of 
A Ad cσ as compared with the magnitude of

Ac

2σ . When looking into 464 

the data analysis, estimates of the dispersion parameters in the model with competition effects 465 

were 
A
ˆ

d

2σ = 12.553, 
A A
ˆ

d cσ = −3.126, 
A
ˆ

c

2σ = 1.259, ˆ p
2σ = 1.186, and ˆ e

2σ = 5.819. On the other hand, 466 

the estimated variances in the model with direct effects only (no competition) were 
A
ˆ

d

2σ = 10.644, 467 

and ˆ
e

2σ = 9.257. The difference between the estimates of 
Ad

2σ  can be explained by the negative 468 

sign and the absolute value (3.126) of 
A Ad cσ relative to the small value of

A
ˆ

c

2σ , which gives more 469 

weight to the 2
nd
 than the 3

rd
 term in [26]. As a consequence, 

A
ˆ

d

2σ in the model with competition 470 

was higher than in the model excluding competitive effects. The value of ˆ
e

2σ  in the model were 471 

competition effects were absent was larger than in the model with competition. This is probably 472 

due to the larger number of covariances related to 3
rd
 as compared to 2

nd
 term in [26]. A quick 473 

look at this formula shows that, whereas a maximum of 16 elements are related to
A Ad cσ , up to 64 474 

elements are associated with
Ac

2σ . Therefore, even tough 
A A
ˆ

d cσ was negative and larger in absolute 475 



value than A
ˆ

c

2σ , the higher number of elements in the third term gave more weight to Ac

2σ than 476 

to
A Ad cσ .  477 

 In the current research, a Bayesian procedure coupled with a Markov Chain Monte Carlo 478 

technique (Gibbs sampling), has been used to estimate the (co)variance components. An 479 

alternative approach for estimating dispersion parameters is the use of REML. Comparison of 480 

frequentist and Bayesian estimators is difficult due to the fact that central issues related to the 481 

comparison of frequentist estimators (such as repeated sampling or bias) do not have the same 482 

meaning in the Bayesian school (Gelman et al., 1995, page 108). When comparing REML vs 483 

Bayes Gibbs sampling for estimating (co)variance components in mixed models by stochastic 484 

simulation, both methods were seemingly unbiased (Van Tassell et al., 1995; Duangjinda et al., 485 

2001). Models compared included different genetic or environmental effects, and different data 486 

based selection policies were performed. For the sake of completeness, we obtained REML 487 

estimates of the dispersion parameters using the EM algorithm (Dempster et al., 1977), using 488 

formulae described in Appendix B. The estimated (co)variance components were 
A
ˆ

d

2σ = 13.889, 489 

A A
ˆ

d cσ = −3.335, 
A
ˆ

c

2σ = 1.521, ˆ p
2σ = 1.150, and ˆ e

2σ = 3.997. On the other hand, the estimated 490 

REML-EM variances in the model with direct effects only (no competition effects) were 
A
ˆ

d

2σ = 491 

7.572, and ˆ e
2σ = 12.496. Although there were some differences, both sets of estimates of the 492 

(co)variance components for the model with competition effects obtained were similar. For the 493 

model without competition effects, the REML-EM estimate of the additive variance was smaller 494 

and the estimated error variance was larger than corresponding Bayesian estimates. An analytical 495 

comparison can be established for the prediction of breeding values using either REML+BLUP or 496 

Bayesian posterior means. Arora and Lahiri (1997, theorem 1, page 1056) showed that BLUP 497 



prediction of random effects from a general mixed model with estimated variance components 498 

(for example, those resulting from the use of REML) have the same expected value as the 499 

Bayesian posterior means from the same model. However, the mean square error of the Bayesian 500 

posterior mean is always smaller than the one obtained from the REML+BLUP predictions. Thus, 501 

one may expect the predictions to be similar on average, but the mean square of the Bayes 502 

posterior means will be smaller than their BLUP counterparts. The exclusion of competition 503 

effects introduces bias in the prediction of breeding values for direct effects, either in an 504 

individual tree model or in a parental or family model. If the individual tree model with 505 

competition effects is difficult to fit, the same predictions of breeding values can be calculated by 506 

means of an equivalent model (Henderson, 1977) that has a reduced number of equations: the 507 

number of fixed effects plus the number of parent trees. This is the topic of a future publication.  508 

Another subject for research in the future is the search for optimal experimental designs to 509 

estimate direct and competition (co)variance components, as for example the use of single-tree 510 

plot vs lineal or squared plots. In all cases the additive relationships between competing 511 

individuals should be of major concern. 512 
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 603 

Appendix A 604 

Derivation of the additive genetic variance with additive competition effects 605 

 606 

The additive genetic variance for direct and competition breeding values in (6) is: 607 
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Using the variance operator in the first term produces  609 

( ) ( ) AVar 1
id i da F 2= + σ              [A.2] 610 

For the second term in [A.1] we have 611 
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where Ajj’ indicates the relationship between competitors j and j’. Therefore 615 

( )( )
1R C 1D

2 2

R C D ´ A

1 '

Var 1 2
i i

j i i

m m

ijk c j ij'k imk jj c

j j j

f a n f n f F f f
−

2
−

= ≠

   
= + + +   

   
∑ ∑ A σ           [A.3] 616 

For the third term in [A.1] we use the covariance operator so that  617 
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Now, by replacing in [A.1] with [A.2], [A.3] and [A.4] gives the additive variance terms for the 619 

variance of 
1.. .mij jy in [9] as 620 
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 622 



Appendix B 623 

REML-EM equations for the (co)variance components in a model with additive direct, additive 624 

competition breeding values and permanent environmental competition effects. 625 

 626 

 In order to obtain REML-EM of dispersion parameters in model [10], we take a similar 627 

approach to Cantet et al. (1993). Let the mixed model equations for the mixed model [10] be: 628 
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The inverse of the coefficient matrix in [B.1] is 630 
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Then, the REML-EM estimating equations of the dispersion parameters in the k
th
 iteration are 632 
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