Bayesian estimation of a surface to account for a spatial trend

using a semiparametric mixed model

[^0]
Abstract

Unaccounted spatial variability leads to bias in estimating genetic parameters and predicting breeding values from forest genetic trials. Previous attempts to account for continuous spatial variation employed spatial coordinates in the direction of the rows (or columns). In this research, we use an individual tree mixed model and the tensor product of B-spline bases with a proper covariance structure for the knot effects to account for spatial variability. Dispersion parameters were estimated using Bayesian techniques via the Gibbs sampling. The procedure is illustrated with data from a progeny trial of E. globulus. Four different models were used in the sequel. The first model included block effects and the three other models included a surface on a grid of either $8 \times 8,12 \times 12$, or 18×18 knots. The three models with B-splines displayed a sizeable lower value of the Deviance Information Criterion than the model with blocks. Also, the mixed models fitting a surface displayed a consistent reduction in the posterior mean of σ_{e}^{2}, an increase in the posterior means of σ_{A}^{2} and $h^{2}{ }_{\text {DBH }}$, and an increase of 66% (for parents) or 60% (for offspring) in the accuracy of breeding values.

Introduction

Forest genetic trials are prone to a high degree of environmental heterogeneity as compared to other cultivated plants (Libby and Cockerham, 1980): trees are large living creatures and occupy more space than most cultivated plant species. Moreover, trees are often planted in places with heterogeneous levels of fertility, humidity, soil depth, or slope. Although spatial heterogeneity is a nuisance effect in forest genetic evaluation where the main goal is the prediction of breeding values, ignoring such a source can lead to biases in the estimation of genetic parameters and the prediction of individual additive genetic effects (breeding values, Magnussen 1993, 1994). To account for environmental gradients, tree breeders have devised forest trials using randomized complete blocks or incomplete block designs. However, setting fixed limits for the blocks makes it difficult to account for continuously varying environmental factors. Additionally, establishing a priori a design that properly account for all sources of environmental heterogeneity may be a hopeless task as "environmental variation is never known prior to establishment" (Fu et al. 1999a). Alternatively, the spatial variation can be accounted for a posteriori within the model of evaluation. In these so called 'spatial models', variability has two main sources: the local trend, or small-scale variation, and the global trend or large-scale variation across a spatial gradient. The two sources are observable in forest genetic trials: either component alone or in combination with each other (e.g., Fu et al. 1999b; Costa e Silva et al. 2001; Dutkowsky et al. 2002; Hamann 2002; Dutkowsky et al. 2006).

Models that account for continuous spatial variation include spatial coordinates expressed as either classification variables or covariables. The latter are non-stochastic functions such as polynomials (Federer 1998) or smoothing splines (Verbyla et al. 1999).

Costa e Silva et al. (2001) and Dutkowsky et al. (2002) considered the global trend in one dimension, either row-wise or column-wise, after adjusting first order autoregressive (AR(1)) and separable covariance structures (Gilmour et al. 1997). Costa e Silva et al. (2001) proposed the use of a classification variable for columns. Also, Dutkowsky et al. (2002) modeled global variation with linear models of fixed effects that included spatial coordinates in one dimension, fitted as quadratic polynomials or cubic smoothing splines (Verbyla et al. 1999). In the latter case, the resulting variogram was not stationary, so that patterns of unaccounted variability were still present in the residuals, most probably associated with rows by columns interactions (Dutkowsky et al. 2002, p. 2205). Therefore, the analysis of forest genetic trials where continuous spatial variation may develop in two dimensions, using classification variables or covariables only in the direction of the rows (or columns), may not completely account for the spatial variability. Thomson and ElKassaby (1988) fitted sixth order degree polynomials in two dimensions by least-squares to compare different provenances of Douglas-fir. The use of polynomials for the analysis in two dimensions (trend analysis) of forest genetic data can also be found in the work of Liu and Burkhart (1994) and Saenz-Romero et al. (2001). However, the fit of polynomials suffer from several drawbacks (Green and Silverman 1994, p. 2). First of all, the fit is global and not local, which means that: 1) the method is not capable of accounting for local variations present in the data; 2) few influential observations exert a large influence in the resulting fit; 3) the fit in the extremes is usually poor. Another serious drawback with polynomials is its numerical instability as the order of the polynomial increases.

Splines are a more efficient approach to the use of polynomials. They are segmented polynomial functions that are locally fitted such that the resulting function is differentiable at the joints of the segments (knots), up to the order of fit. Splines are able to capture most
sinuosities present in the data and do not suffer from numerical instability. Eilers and Marx (1996) introduced penalized splines in one dimension using B-splines with equally spaced knots, and a linear model approach with a roughness penalty consisting on the differences among the parameters, i.e. the effects of the knots. T. Speed (see Robinson 1991) first pointed out the connection between splines and mixed models, a subject further expanded by Ruppert et al. (2003) and Wand (2003). Cantet et al. (2005) approached P-splines in one dimension using proper covariance structures rather matrices of differences, in an animal breeding context. Eilers and Marx (2003) extended their methodology to estimate a surface along two dimensions, using the tensor product of B-splines. The goal of the present research is to show how to fit a surface using the tensor product of B-spline bases, to account for continuous spatial variation in an individual tree mixed model for forest genetic evaluation. To do that, we superimpose a covariance structure for the knot effects in a twodimensional grid. As in some recent contributions to forest breeding (Soria et al. 1998; Gwaze and Woolliams 2001; Zeng et al. 2004; Cappa and Cantet 2006a; Waldmann and Ericsson 2006), we employed the Bayesian approach via Gibbs sampling to make inferences in all dispersion parameters of the model. Developments are illustrated by means of a progeny trial data on diameter at breast height in Eucalyptus globulus ssp. globulus. The resulting estimates of all dispersion parameters for mixed models that include the fitted surface are finally compared with corresponding estimates from the classical model including blocks.

Methods

Two-dimensional tensor product of B-splines

We first briefly introduce penalized splines (P-splines) in one dimension as suggested by Eilers and Marx (1996). Then, we take the approach of Eilers and Marx (2003) and Green and Silverman (1994) and extend P-splines to two dimensions using the tensorial product of P -splines.

Eilers and Marx (1996) advocated using B-splines with equally spaced knots to obtain penalized splines. B-splines are local basis functions, consisting of polynomial segments of degree d, in general quadratic or cubic, that have $d-1$ continuous derivatives at the joining points, or knots. A B-spline of degree d is positive on a domain spanned by d +2 knots and is zero elsewhere. All in all, $d+1 \mathrm{~B}$-spline coefficients are nonzero. Eilers and Marx (1996) introduced a penalty that affects first or second differences of B-spline coefficients. The penalty controls the degree of smoothness while fitting the function. Let \boldsymbol{y} and \boldsymbol{x} be vectors of length n containing the observed and explanatory variables, respectively, and let $\boldsymbol{s}(\boldsymbol{x})$ be a spline function written as:

$$
\begin{equation*}
\boldsymbol{s}(\boldsymbol{x})=\sum_{i=1}^{k} \boldsymbol{B}_{i}(x) \boldsymbol{b}_{i} \tag{1}
\end{equation*}
$$

where $\boldsymbol{B}_{i}=\left(\boldsymbol{B}_{1}(x), \boldsymbol{B}_{2}(x), \ldots, \boldsymbol{B}_{k}(x)\right)^{\prime}$ is a column vector with B-spline bases (De Boor, 1993), and $\boldsymbol{b}_{i}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{k}\right)^{\prime}$ denotes the vector of spline coefficients in one dimension. In matrix form, expression [1] can be written as $\boldsymbol{B} \boldsymbol{b}$, being \boldsymbol{B} the $n \times k$ matrix that contains the \boldsymbol{B}_{i} 's, and \boldsymbol{b} is the parametric vector $(k \times 1)$ containing the \boldsymbol{b}_{i} 's to form $\boldsymbol{s}(\boldsymbol{x})$. The functional [1] is generally fitted by least-squares with an additive penalty. Eilers and Marx
(1996) observed that the penalized estimator of \boldsymbol{b} is the solution of the following system of equations:

$$
\begin{equation*}
\left(\boldsymbol{B}^{\prime} \boldsymbol{B}+\lambda \boldsymbol{D}_{d}^{\prime} \boldsymbol{D}_{d}\right) \hat{\boldsymbol{b}}=\boldsymbol{B}^{\prime} \boldsymbol{y} \tag{2}
\end{equation*}
$$

where the positive scalar λ controls the amount of smoothing and $\boldsymbol{D}_{\boldsymbol{d}}$ is the matrix of differences of order d. For $d=1$ and $d=2$, we respectively have:

$$
\boldsymbol{D}_{1}=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \tag{3}\\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] ; \quad \boldsymbol{D}_{2}=\left[\begin{array}{rrrrr}
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]
$$

Ruppert et al. (2003) and Wand (2003) discussed the connection between P-splines and mixed models (Henderson, 1984). The smoothing parameter λ is seen as the ratio of the error variance to the variance of the B-spline coefficients \boldsymbol{b}_{i}. Moreover, $\boldsymbol{D}^{\prime} \boldsymbol{D}$ is interpreted as a g-inverse of the covariance matrix of the B-spline coefficients (Cantet et al. 2005), and acts as a singular penalization matrix.

Tensor products of B-splines allow a natural extension of one dimensional P-spline smoothing to two dimensions by means of the Kronecker product of single structures. A more rigorous approach can be found in Green and Silverman (1994, p. 155-159). The tensor product of two univariate B-splines along the rows (r) and columns (c) is defined as the $r \times c$ rectangle in \mathfrak{R}^{2} such that $\boldsymbol{T}_{k l}(r, c)=\boldsymbol{B} \boldsymbol{r}_{k}(r) \boldsymbol{B} \boldsymbol{c}_{l}(c)$, where $\boldsymbol{B} \boldsymbol{r}_{k}(r)$ and $\boldsymbol{B} \boldsymbol{c}_{l}(c)$ are B-spline bases for the row $\left(k=1,2, \ldots, n x_{r}\right)$ and column $\left(l=1,2, \ldots, n x_{c}\right)$ knot effects, respectively. If row and column knots are chosen to be equally spaced, the $r \times c$ space can be divided in small rectangular panels such that $\left[r_{k}, r_{k+6}\right] \times\left[c_{l}, c_{l+6}\right]$. Let $\boldsymbol{S}=\left[\boldsymbol{\gamma}_{k l}\right]$ be the $n x_{r} \times$ $n x_{c}$ matrix containing the coefficients from the tensor product of B-splines that have to be
estimated. Then, for a given set of knots the surface $(\alpha(r, c))$ can be approximated using the following matrix expression

$$
\begin{equation*}
\operatorname{vec}\{\alpha(r, c)\}=\boldsymbol{B} \boldsymbol{b} \tag{4}
\end{equation*}
$$

where \boldsymbol{B} has dimension $\boldsymbol{n} \times\left(n x_{r} \times n x_{c}\right)$ and is equal to $\boldsymbol{B}=\left(\boldsymbol{B}_{r} \otimes 1_{n x_{c}}^{\prime}\right) \odot\left(1_{n x_{r}}^{\prime} \otimes \boldsymbol{B}_{c}\right)$. The notation vec stands for the operator that results from stacking the columns of a matrix into a vector, and the symbols \otimes and \odot indicate the Kronecker and Hadamard products of matrices, respectively (Harville, 1997).

In analogy to what they had done for one dimension (Eilers and Marx, 1996), Eilers and Mark (2003) and Marx and Eilers (2005) proposed a two-dimensional penalized estimation of a surface. Let λ_{r} and λ_{c} be the parameters controlling the degree of smoothness for rows and columns, respectively, whereas $\boldsymbol{D}_{\boldsymbol{r}}$ and $\boldsymbol{D}_{\boldsymbol{c}}$ are the respective difference matrices [3]. Then, the solution for $\hat{\boldsymbol{b}}$ is obtained by solving the equations

$$
\begin{equation*}
\left(\boldsymbol{B}^{\prime} \boldsymbol{B}+\lambda_{r}\left(\boldsymbol{I}_{n x r} \otimes \boldsymbol{D}_{r}^{\prime} \boldsymbol{D}_{r}\right)_{r}+\lambda_{c}\left(\boldsymbol{D}_{c}^{\prime} \boldsymbol{D}_{c} \otimes \boldsymbol{I}_{n x c}\right)\right) \hat{\boldsymbol{b}}=\boldsymbol{B}^{\prime} \boldsymbol{y} \tag{5}
\end{equation*}
$$

The expression above is similar to the system in one dimension where \boldsymbol{B} is replaced by $\boldsymbol{B r}$ or $\boldsymbol{B} \boldsymbol{c}$, and $\lambda \boldsymbol{D}^{\prime} \boldsymbol{D}$ is replaced by $\lambda_{r}\left(\boldsymbol{I}_{n x r} \otimes \boldsymbol{D}_{r}^{\prime} \boldsymbol{D}_{r}\right)_{r}+\lambda_{c}\left(\boldsymbol{D}_{c}^{\prime} \boldsymbol{D}_{c} \otimes \boldsymbol{I}_{n x}\right)$. In the next section, we show how to fit data in two dimensions using the tensor product of B-splines by means of a mixed linear model.

Mixed model representation of a two-dimensional tensor product of B-splines

In forest genetic trials trees are usually arranged in regular grids arrayed in rows and columns. In order to position any tree, let r and c be the row and column coordinates,
respectively, measured in meters or degrees. Let \boldsymbol{Y} be an n_{r} (number of rows) $\times n_{c}$ (number of columns) containing the observations for a trait (such as height, or diameter). Consider also the vector \boldsymbol{y} such that $\boldsymbol{y}=\operatorname{vec}(\boldsymbol{Y})$, so that data are ordered by column within row. Then, an individual tree mixed model with a smoothed surface to account for environmental heterogeneity is equal to

$$
\begin{equation*}
y=X \beta+B b+Z a+e \tag{6}
\end{equation*}
$$

In [6], $\boldsymbol{\beta}$ is a $p \times 1$ vector of fixed effects associated to \boldsymbol{y} by the incidence matrix $\boldsymbol{X}(n \times p)$ such that $r[\boldsymbol{X}]=p$. In case $r[\boldsymbol{X}]<p$, it is always possible to find a reparametrization that turns \boldsymbol{X} into a matrix of full-column rank (Christensen, 1987). The random $q \times 1$ vector \boldsymbol{a} contains the breeding values, and is related to \boldsymbol{y} by the incidence matrix \boldsymbol{Z} (of order $n \times q$). The expectation of \boldsymbol{a} is $\boldsymbol{0}$ and the covariance matrix is $\boldsymbol{A} \boldsymbol{\sigma}_{\mathrm{A}}^{2}$ where \boldsymbol{A} is the additive relationship matrix (Henderson, 1984) among trees, and σ_{A}^{2} is the additive genetic variance. The distribution of the random vector \boldsymbol{b} containing the coefficients of the tensor product of B-splines is such that $\boldsymbol{b} \sim N\left(\boldsymbol{0}, \boldsymbol{U} \boldsymbol{\sigma}_{b}^{2}\right)$. The scalar $\boldsymbol{\sigma}_{b}^{2}$ is the variance of the coefficients for rows and columns and \boldsymbol{U} is the covariance structure in two-dimensions. Finally, random error terms are included in the $n \times 1$ vector \boldsymbol{e}, which is distributed as $\boldsymbol{e} \sim N\left(\boldsymbol{0}, \boldsymbol{I} \sigma_{e}^{2}\right)$ and σ_{e}^{2} is the error variance.

The covariance structure \boldsymbol{U} plays an important role in model [6]. The matrix should reflect the correlation decay among B-spline knots that are further apart, either row or column-wise. A possible choice for \boldsymbol{U} is $\boldsymbol{\Sigma}_{r} \otimes \boldsymbol{\Sigma}_{c}$, a Kronecker product of matrices for the rows $\left(\boldsymbol{\Sigma}_{r}\right)$ and for the columns $\left(\boldsymbol{\Sigma}_{c}\right)$. If \boldsymbol{U} is a linear covariance structure (Anderson, 1973), the estimation process is simplified and there is only one parameter to estimate: σ_{b}^{2}. Then,
estimation can be performed with simpler methods and algorithms, i.e. REML-EM or Gibbs sampling. The challenge is to find a \boldsymbol{U} that is informative enough among the correlation decay among knot effects, at the same time that does not depend on extra parameters. In this regard, we will set $\boldsymbol{\Sigma}_{r}$ and $\boldsymbol{\Sigma}_{c}$ to be equal to the one-dimensional covariance structure originally proposed by Green and Silverman (1994, p. 13) and then used by Durban et al. (2001) to fit a fertility trend. In this tridiagonal matrix, correlations are non-zero for neighbor knots, and are 0 otherwise. More explicitly, if $\varsigma_{i j}$ is element $i j$ of any of the matrices Σ_{r} or Σ_{c}, diagonals are $\varsigma_{i i}=4 / 6$, whereas off-diagonals are either $\varsigma_{i+1, i}=\varsigma_{i, i+1}=1 / 6$ or $\varsigma_{i j}=0$ for $|i-j| \geq 2, i=j=1,2, \ldots, n x_{r}$ or $n x_{c}$. Thus, besides being positive definite, $\boldsymbol{U}=\boldsymbol{\Sigma}_{r} \otimes \boldsymbol{\Sigma}_{c}$ is strictly diagonally dominant as $\left|\varsigma_{i i}\right|>\sum_{j \neq i}\left|\varsigma_{i j}\right|$ for every i. To exemplify, suppose $n x_{r}=n x_{c}=4$, then

$$
\boldsymbol{\Sigma}_{r}=\boldsymbol{\Sigma}_{c}=\frac{1}{6}\left[\begin{array}{llll}
4 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

and $\boldsymbol{U}=\boldsymbol{\Sigma}_{r} \otimes \boldsymbol{\Sigma}_{c}$ is equal to
$\frac{1}{6}\left[\begin{array}{cccccccccccccccc}16 & 4 & 0 & 0 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 16 & 4 & 0 & 1 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 16 & 4 & 0 & 1 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 16 & 0 & 0 & 1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 & 16 & 4 & 0 & 0 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 & 4 & 16 & 4 & 0 & 1 & 4 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 & 4 & 16 & 4 & 0 & 1 & 4 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & 0 & 0 & 4 & 16 & 0 & 0 & 1 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 1 & 0 & 0 & 16 & 4 & 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 4 & 1 & 0 & 4 & 16 & 4 & 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 4 & 1 & 0 & 4 & 16 & 4 & 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 0 & 0 & 4 & 16 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 1 & 0 & 0 & 16 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 1 & 0 & 4 & 16 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 1 & 0 & 4 & 16 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 0 & 0 & 4 & 16\end{array}\right]$

In this example non-zero elements of \boldsymbol{U} are correlations between neighbor knots. Take for example, the second knot (row 2 of \boldsymbol{U}) having as proximal neighbors the knots 1 , 3 and 6 , and as diagonal neighbors the knots 5 and 7 . Notice that correlations with neighbors in proximal positions are stronger (4/6) than with neighbors located diagonally $(1 / 3)$. Implicit is the assumption that the spacing between both columns and rows is equal. There other structures that allow modeling a gradual decay in correlation as knots are separated further in the direction of the rows or of the columns, such as those proposed by Hyndman et al. (2005) or Cantet et al. (2005). Finally, given the random effects in [6], the covariance matrix \boldsymbol{y} (say \boldsymbol{V}) is as follows:

$$
\begin{equation*}
\boldsymbol{V}=\boldsymbol{Z} \boldsymbol{A} \boldsymbol{Z}^{\prime} \sigma_{\mathrm{A}}^{2}+\boldsymbol{B} \boldsymbol{U} \boldsymbol{B}^{\prime} \sigma_{b}^{2}+\boldsymbol{I}_{n} \sigma_{e}^{2} \tag{7}
\end{equation*}
$$

and mixed model equations (Henderson, 1984) for [6] are

$$
\left[\begin{array}{ccc}
\boldsymbol{X}^{\prime} \boldsymbol{X} & \boldsymbol{X}^{\prime} \boldsymbol{B} & \boldsymbol{X}^{\prime} \boldsymbol{Z} \tag{8}\\
\boldsymbol{B}^{\prime} \boldsymbol{X} & \boldsymbol{B}^{\prime} \boldsymbol{B}+\boldsymbol{U}^{-1} \lambda & \boldsymbol{B}^{\prime} \boldsymbol{Z} \\
\boldsymbol{Z}^{\prime} \boldsymbol{X} & \boldsymbol{Z}^{\prime} \boldsymbol{B} & \boldsymbol{Z}^{\prime} \boldsymbol{Z}+\boldsymbol{A}^{-1} \alpha
\end{array}\right]\left[\begin{array}{l}
\hat{\boldsymbol{\beta}} \\
\hat{b} \\
\hat{a}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{X}^{\prime} \boldsymbol{y} \\
\boldsymbol{B}^{\prime} \boldsymbol{y} \\
\boldsymbol{Z}^{\prime} \boldsymbol{y}
\end{array}\right]
$$

where $\lambda=\sigma_{e}^{2} / \sigma_{b}^{2}$ and $\alpha=\sigma_{e}^{2} / \sigma_{\mathrm{A}}^{2}$. Notice that in the Bayesian view of the mixed linear model (Sorensen and Gianola, 2002) the likelihood of the data is proportional to

$$
\begin{equation*}
p(\boldsymbol{y} \mid \boldsymbol{\beta}, \boldsymbol{a}, \boldsymbol{b}) \propto\left(\sigma_{e}^{2}\right)^{-\frac{1}{2}} \exp \left[\frac{1}{2 \sigma_{e}^{2}}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \boldsymbol{a}-\boldsymbol{B} \boldsymbol{b})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \boldsymbol{a}-\boldsymbol{B} \boldsymbol{b})\right] \tag{9}
\end{equation*}
$$

Bayesian estimation

The Bayesian approach via Gibbs sampling was used to estimate the parameters in model [6] (Sorensen and Gianola, 2002). We now specify the prior distributions, as well as the joint and marginal conditional posterior densities.

Specification of prior distributions: Conjugate prior densities were chosen for all parameters. To reflect a prior state of uncertainty for the fixed effects and to keep a proper posterior distribution (Hobert and Casella 1996), we set $\boldsymbol{\beta} \sim N_{p}(\boldsymbol{0}, \boldsymbol{K})$ and \boldsymbol{K} is a diagonal matrix with very large elements $\left(k_{i i}>10^{8}\right)$. Therefore, this prior density is proportional to:

$$
\begin{equation*}
p(\boldsymbol{\beta} \mid \boldsymbol{K}) \propto\left|\prod_{i=1}^{p} k_{i i}\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{p} \frac{\boldsymbol{\beta}_{i}^{2}}{k_{i i}}\right\} \tag{10}
\end{equation*}
$$

The vector of the tensor product of B-spline coefficients \boldsymbol{b} is distributed a priori as $\boldsymbol{b} \sim$ $N_{b}\left(\boldsymbol{0}, \boldsymbol{U} \sigma_{b}^{2}\right)$, so that:

The prior density for the vector of breeding values is $\boldsymbol{a} \sim N_{q}\left(\boldsymbol{0}, \boldsymbol{G}_{0} \otimes \boldsymbol{A}\right)$ (see (13.38) in Sorensen and Gianola, 2002, p. 578), so that:

$$
\begin{equation*}
p\left(\boldsymbol{a} \mid \sigma_{\mathrm{A}}^{2}\right) \propto\left(\sigma_{\mathrm{A}}^{2}\right)^{-\frac{q}{2}} \exp \left\{-\frac{\boldsymbol{a}^{\prime} \boldsymbol{A}^{-1} \boldsymbol{a}}{2 \sigma_{\mathrm{A}}^{2}}\right\} \tag{12}
\end{equation*}
$$

Following Sorensen and Gianola (2002), we chose to use independent scaled inverted chisquare densities as prior distributions for the variance components $\sigma^{2}{ }_{b}, \sigma_{\mathrm{A}}^{2}$ and $\sigma^{2}{ }_{e}$:

$$
\begin{align*}
& p\left(\sigma_{b}^{2} \mid v_{b}, \delta_{b}^{2}\right) \propto\left(\sigma_{b}^{2}\right)^{-\left(\frac{v_{b}}{2}+1\right)} \exp \left\{-\frac{v_{b} \delta_{b}^{2}}{2 \sigma_{b}^{2}}\right\} \tag{13}\\
& p\left(\sigma_{\mathrm{A}}^{2} \mid v_{\mathrm{A}}, \delta_{\mathrm{A}}^{2}\right) \propto\left(\sigma_{\mathrm{A}}^{2}\right)^{-\left(\frac{v_{\mathrm{A}}}{2}+1\right)} \exp \left\{-\frac{v_{\mathrm{A}} \delta_{\mathrm{A}}^{2}}{2 \sigma_{\mathrm{A}}^{2}}\right\} \tag{14}\\
& p\left(\sigma_{e}^{2} \mid v_{e}, \delta_{e}^{2}\right) \propto\left(\sigma_{e}^{2}\right)^{-\left(\frac{v_{e}}{2}+1\right)} \exp \left\{-\frac{v_{e} \delta_{e}^{2}}{2 \sigma_{e}^{2}}\right\} \tag{15}
\end{align*}
$$

Parameters in the densities [13], [14], and [15], are the hypervariances $\delta^{2}{ }_{b}, \delta^{2}{ }_{\mathrm{A}}$ and $\delta^{2}{ }_{e}$, and the degrees of freedom v_{b}, v_{A} and v_{e}, respectively.

Joint and conditional posterior densities: By multiplying [9] with [10], [11], [12], [13], [14], and [15], the joint posterior density of all parameters is proportional to:

$$
p\left(\boldsymbol{\beta}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\sigma}_{b}^{2}, \boldsymbol{\sigma}_{\mathrm{A}}^{2}, \boldsymbol{\sigma}_{e}^{2} \mid \boldsymbol{y}, \boldsymbol{v}_{b}, \boldsymbol{v}_{\mathrm{A}}, \boldsymbol{v}_{e}, \delta_{b}^{2}, \boldsymbol{\delta}_{\mathrm{A}}^{2}, \boldsymbol{\delta}_{e}^{2}\right) \propto
$$

$$
\begin{gather*}
\left(\sigma_{e}^{2}\right)^{-\frac{n}{2}} \exp \left[-\frac{1}{2 \sigma_{e}^{2}}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{B} \boldsymbol{b}-\boldsymbol{Z a})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{B} \boldsymbol{b}-\boldsymbol{Z a})\right] \exp \left\{-\frac{1}{2} \sum_{i=1}^{p} \frac{\boldsymbol{\beta}_{i}^{2}}{k_{i i}}\right\} \\
\left(\sigma_{b}^{2}\right)^{-\frac{n x^{*} n x}{2}} \exp \left\{-\frac{\boldsymbol{b}^{\prime} \boldsymbol{U}^{-1} \boldsymbol{b}}{2 \sigma_{b}^{2}}\right\}\left(\sigma_{\mathrm{A}}^{2}\right)^{-\frac{q}{2}} \exp \left\{-\frac{\boldsymbol{a}^{\prime} \boldsymbol{A}^{-1} \boldsymbol{a}}{2 \sigma_{\mathrm{A}}^{2}}\right\}\left(\sigma_{b}^{2}\right)^{-\left(\frac{v_{b}}{2}+1\right)} \exp \left\{-\frac{v_{b} \delta_{b}^{2}}{2 \sigma_{b}^{2}}\right\} \\
\left(\sigma_{\mathrm{A}}^{2}\right)^{-\left(\frac{v_{\mathrm{A}}}{2}+1\right)} \exp \left\{-\frac{v_{\mathrm{A}} \delta_{\mathrm{A}}^{2}}{2 \sigma_{\mathrm{A}}^{2}}\right\}\left(\sigma_{e}^{2}\right)^{-\left(\frac{v_{e}}{2}+1\right)} \exp \left\{-\frac{v_{e} \delta_{e}^{2}}{2 \sigma_{e}^{2}}\right\} \tag{16}
\end{gather*}
$$

Inference on any parameter by means of the Gibbs sampler requires conditional posterior densities in close form. The joint conditional density of $\boldsymbol{\beta}$ and \boldsymbol{b}, and \boldsymbol{a} is equal to

$$
\left[\begin{array}{l}
\boldsymbol{\beta} \tag{17}\\
\boldsymbol{b} \\
\boldsymbol{a}
\end{array}\right] \boldsymbol{y}, \sigma_{\mathrm{A}}^{2}, \sigma_{b}^{2}, \sigma_{e}^{2} \sim N\left(\left[\begin{array}{l}
\boldsymbol{\beta} \\
\boldsymbol{b} \\
\boldsymbol{a}
\end{array}\right],\left[\begin{array}{ccc}
\boldsymbol{X}^{\prime} \boldsymbol{X} & \boldsymbol{X}^{\prime} \boldsymbol{B} & \boldsymbol{X}^{\prime} \boldsymbol{Z} \\
\boldsymbol{B}^{\prime} \boldsymbol{X} & \boldsymbol{B}^{\prime} \boldsymbol{B}+\boldsymbol{U}^{-1} \boldsymbol{\lambda} & \boldsymbol{B}^{\prime} \boldsymbol{Z} \\
\boldsymbol{Z}^{\prime} \boldsymbol{X} & \boldsymbol{Z}^{\prime} \boldsymbol{B} & \boldsymbol{Z} \boldsymbol{Z}^{\prime} \boldsymbol{Z}+\boldsymbol{A}^{-1} \boldsymbol{\alpha}
\end{array}\right]^{-1}\right)
$$

Vectors $\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{b}}$ and $\hat{\boldsymbol{a}}$ are the solutions to equations [8]. The conditional posterior distribution of σ_{A}^{2} is scaled inverted chi-square

$$
\begin{equation*}
p\left(\sigma_{\mathrm{A}}^{2} \mid \boldsymbol{\beta}, \boldsymbol{b}, \boldsymbol{a}, \sigma_{b}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto \operatorname{Inv}-\chi^{2}\left(\tilde{v}_{\mathrm{A}}, \tilde{\delta}_{\mathrm{A}}^{2}\right) \tag{18}
\end{equation*}
$$

with parameters $\tilde{v}_{\mathrm{A}}=q+v_{\mathrm{A}}$ and $\tilde{\boldsymbol{\delta}}_{\mathrm{A}}^{2}=\left(\boldsymbol{a}^{\prime} \boldsymbol{A}^{-1} \boldsymbol{a}+v_{\mathrm{A}} \delta_{\mathrm{A}}^{2}\right) / \tilde{v}_{\mathrm{A}}$. Also, for $\sigma^{2}{ }_{b}$ we have

$$
\begin{equation*}
p\left(\sigma_{b}^{2} \mid \boldsymbol{\beta}, \boldsymbol{b}, \boldsymbol{a}, \sigma_{\mathrm{A}}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto \operatorname{Inv}-\chi^{2}\left(\tilde{\mathrm{v}}_{b}, \tilde{\boldsymbol{\delta}}_{b}^{2}\right) \tag{19}
\end{equation*}
$$

with $\tilde{v}_{b}=n x^{*} n x+v_{b}$ and $\tilde{\delta}_{b}^{2}=\left(\boldsymbol{b}^{\prime} \boldsymbol{U}^{-1} \boldsymbol{b}+v_{b} \delta_{b}^{2}\right) / \tilde{v}_{b}$. Finally, the error variance has the following conditional posterior

$$
\begin{equation*}
p\left(\sigma_{e}^{2} \mid \boldsymbol{\beta}, \boldsymbol{a}, \boldsymbol{b}, \sigma_{b}^{2}, \sigma_{\mathrm{A}}^{2}, \boldsymbol{y}\right) \propto\left(\sigma_{e}^{2}\right)^{-\left(\frac{n+v_{e}+2}{2}+1\right)} \exp \left\{-\frac{\tilde{\mathrm{v}}_{e} \tilde{\delta}_{e}^{2}}{2 \sigma_{e}^{2}}\right\} \tag{20}
\end{equation*}
$$

with $\tilde{v}_{e}=n+v_{e}$ degrees of freedom and scale parameter $\tilde{\delta}_{e}^{2}=\left(e^{\prime} e+v_{e} \delta_{e}^{2}\right) / \tilde{v}_{e}$. At any iteration of the Gibbs algorithm, we first sampled from distribution [17], then from [20], then from [18], and finally from [19], to start the process back again. A program was written in FORTRAN to perform all calculations.

A working example: Analysis of an E. globulus progeny trial

Data

A Eucalyptus globulus ssp. globulus progeny trial was used in the study. The data were collected at Licenciado Matienzo (lat. $37^{\circ} 59^{\prime} 578^{\prime \prime}$ S long. $59^{\circ} 00^{\prime} 107^{\prime \prime}$ W), in the
southeastern part of Buenos Aires province, Argentina, where E. globulus has traditionally being planted (Lopez et al. 2001). The soil was a fine Petrocalcic Paleudoll, with subsurficial petrocalcic horizon (locally known as "tosca") at variable depth. There were 1080 trees from seventy two seed lots: 36 open pollinated families from 8 native stand sites in Australia, 30 open pollinated families and 6 bulk collections from land race from Argentina, Portugal, Spain and Chile (Lopez et al. 2001). After including all known genetic relationships, a total of 1148 individual trees were used in the pedigree file. The trait was diameter at breast height $(1.3 \mathrm{~m}, \mathrm{DBH})$, measured when trees were 6 year-old in cm . Trees were planted in single-tree plots on a rectangular grid of 32 rows and 36 columns ($93 \mathrm{~m} \times$ 105 m) arrayed in squares of 3 by 3 meters, with 15 replicates per family. Then, rows have coordinates $r_{i,} i=1,2, \ldots, R=32$ and columns coordinates $c_{j}, j=1,2, \ldots, C=36$. For the purpose of model fitting, row (r) and column (c) spatial coordinates were expressed in meters and the origin was taken to be the north corner. The first tree $(r=1, c=1)$ was set to coordinates $(0,0)$, so that R was equal to 93 m and C to 105 m .

Models of analysis

Four individual additive tree models were evaluated. All models included a fixed effect of genetic group to account for the means of the different origins of parents, random additive genetic effects (breeding values), and random errors. Model 1 also included fixed block effects. In the other three models (2, 3, and 4), a surface was fitted using the tensor products of cubic B-splines. These models differ in the number of knots: $8 \times 8,12 \times 12$ and 18×18, for models 2, 3 and 4, respectively. The coefficients for the cubic B-splines in \boldsymbol{B} were calculated using the recursive algorithm of De Boor (1993), and the order of the
resulting matrix was $n \times\left(n x_{r} \times n x_{c}\right)$. Accordingly, the vector \boldsymbol{b} was of order $\left(n x_{r} \times n x_{c}\right) \times 1$, and the covariance structure \boldsymbol{U} of order $\left(n x_{r} \times n x_{c}\right) \times\left(n x_{r} \times n x_{c}\right)$. The Deviance Information Criterion (DIC, Spiegelhalter et al. 2002) was employed to compare the fit from different models. The model with the smallest value of DIC should be favored, as this indicates a better fit and a lower degree of model complexity. Numerical details for the calculus of DIC in individual tree models were given by Cappa and Cantet (2006a).

Further model comparison was provided by the accuracy of prediction of breeding values, which was computed using the following expression:

$$
r=\sqrt{\frac{1-\mathrm{PEV}}{\sigma_{\mathrm{A}}^{2}}}
$$

The acronym PEV stands for 'prediction error variance' (Henderson, 1984) of predicted breeding values using the "Best linear unbiased predictors" (BLUPs) of parent and offspring. The PEV is calculated as the diagonal elements of the inverse of the coefficient matrix from the mixed model equations (Henderson, 1984) in [8]. The required variance components to set up the mixed model equations were those estimated from the Bayesian analysis. Spearman correlations were also estimated to compare predicted breeding values from different models.

Spatial analysis of residuals

In order to identify spatial patterns in the data, we examined the spatial distribution and the variogram of the residuals as suggested by Gilmour et al. (1997), using a model with fixed genetic groups and random breeding values. The distribution of the DBH residuals is displayed in Figure 1. The color intensity represents the magnitude of the
residuals: the darker the dot, the larger the residual value. Additionally, residuals were plotted against row and column position, to detect dissimilar patterns in any row (across columns, Figure 2a), or in any column (across rows, Figure 2b). To exemplify, only rows 1, 16 , and 32 , and columns 1,16 and 32 , are displayed. Notice the different residual patterns across rows or columns, which indicate the presence of interaction between row and column position and the need for a two-dimensional smoothing. This effect is also observed in the sample variogram displayed in Figure 3, where there is a consistent increase in the semivariance as the displacements in the row and column directions increase. Note the steeper slope row-wise (on the left side of the figure), as compared to the column-wise slope (on the right side of the figure).
[Insert Figure 1 about here]
[Insert Figure 2 about here]
[Insert Figure 3 about here]

Computational details and posterior inference

The values of the hypervariances $\delta_{\mathrm{A}}^{2}, \delta_{b}^{2}$ and δ_{e}^{2} were calculated using a single trait Gibbs sampler from the same data set. The degrees of belief were set to 10 (i.e. $n_{A}=v_{k}=$ 10) to reflect a relatively high degree of uncertainty. The deviance information criterion (DIC) was computed for each model using the output from the Gibbs sampling. At the end of each iteration, heritability of DBH was calculated as $h_{\mathrm{DBH}}^{2}=\tilde{\sigma}_{\mathrm{A}}^{2} /\left(\tilde{\sigma}_{\mathrm{A}}^{2}+\tilde{\sigma}_{e}^{2}\right)$ where $\tilde{\sigma}_{\mathrm{A}}^{2}$ and $\tilde{\sigma}_{e}^{2}$ are the values of the additive and error variance sampled at a given iteration.

A single Gibbs chain of 1010000 iterations was sampled, and the first 10000 iterates were discarded due to burn-in. Autocorrelations were calculated with "Bayesian Output Análisis" (BOA version 1.0.1, Smith 2003) for all lags from 1 to 50.). To evaluate the impact of autocorrelations in the variability of the samples, the 'effective sample size' (ESS) proposed by R. Neal (Kass et al. 1998) was calculated for each parameter as:

$$
\mathrm{ESS}=\frac{1000000}{1+2 \sum_{i=1}^{50} \rho(i)}
$$

where $\rho(i)$ is the autocorrelation measured at lag i. Marginal posterior densities for all parameters were estimated by the Gaussian kernel method (Silverman 1986; chapter 2):

$$
\begin{equation*}
f(\theta)=\frac{1}{1000000 h} \sum_{i=1}^{1000000} \frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{z-\theta_{i}}{h}\right)^{2}\right] \tag{21}
\end{equation*}
$$

In (16), $f(\theta)$ is the estimated posterior density, $\theta_{i}(i=1, \ldots, 1000000)$ is a sampled value and h is the window width estimated by unbiased cross-validation. Mean, mode, median, standard deviation (SD), and 95% high posterior density interval (95% HPD), were then calculated with BOA for all parameters from the individual marginal posteriors using the free-software R (http://www.r-project.org/).

Results

The values of DIC for models 1 to 4 were 3152.66, 2868.64, 2833.46, and 2835.12, respectively. Note that all models that included a tensor product of B-splines had a smaller DIC (i.e. better fits) than model 1 with block effects. Model 3 (12×12 knots) showed the smallest DIC, closely followed by model 4 (18×18 knots). The presence of spatial effects
could be observed in Figure 4, which displays the estimates of the block effects for model 1 , or the estimated surface for models 2 to 4 . There seems to be similarities in the locations of the 'hills' and 'valleys' in all four graphs. The fit for model 1 is expectedly abrupt as block effects are parameters for a categorical variable. On the other hand, the estimated surfaces with models 2 to 4 show that the degree of smoothness increases with the increase in the number of knots from 8 to 18 .

[Insert Figure 4 about here]

Posterior statistics for $\sigma_{\mathrm{A}}^{2}, \sigma_{b}^{2}, \sigma_{e}^{2}$ and $h_{\text {DBH }}^{2}$ are shown in Table 1. Posterior means, medians and modes of the variance components and $h^{2}{ }_{\text {DBH }}$ were similar except for σ_{A}^{2} from models 2 and 3 and σ_{e}^{2} from model 1 , where the modes were smaller than means and medians. Estimates of σ_{A}^{2} and σ_{e}^{2} were similar in models 2 to 4 , and this resulted in similar posteriors means of $h^{2}{ }_{\mathrm{DBH}}: 0.237,0.261$, and 0.256 for the models with 8,12 and 18 knots, respectively. Conversely, the estimated posterior mean of $h^{2}{ }_{\text {DBH }}$ from the model with blocks was sensibly smaller (0.08). Also, the estimate of σ_{b}^{2} from model 2 (17.35) was smaller than the estimated values from models 3 (22.31) and 4 (21.76). The estimates of σ_{e}^{2} from models 2 to 4 were about half the magnitude of the parameter estimate for model 1 . This is due to the spatial variation not being completely accounted for by the blocking procedure in model 1. None of the $95 \% \mathrm{HPD}$ for $\sigma_{\mathrm{A}}^{2}, \sigma_{b}^{2}, \sigma_{e}^{2}$ and $h_{\text {DBH }}^{2}$ included 0 , suggesting that no parameter is equal to zero. The standard errors indicate that all estimates were quite precise, though large numbers of samples were drawn to attain reasonable ESS (last column in Table 1).
[Insert Table 1 about here]

The average accuracy of prediction of breeding values, calculated from model 3 (the one with the smallest DIC) was higher for parents (0.61) and progeny (0.54), than corresponding values (0.40 and 0.32) calculated from model 1 . Thus, fitting a surface using B-splines resulted in a gain in accuracy of 66% for parents and 60% for offspring, a result which is due to the larger value of $h_{\text {DBH }}^{2}$ estimated in the model with B-splines. The Spearman correlation between predicted breeding values from models 1 and 3 was equal to 0.97 for parents and 0.94 for offspring, indicating that some re-ranking took place between the individuals with the least information, i.e. the progenies.

Discussion

Unaccounted spatial variability in forest genetic trials leads to bias in estimating genetic parameters and predicting breeding values (Magnussen 1993, 1994), so that accuracy of selection decreases, thus reducing genetic gain. In the current research, we showed how to fit a two-dimensional surface using the tensor product of B-splines bases by means of a mixed model, in the spirit of Eilers and Marx $(1996,2003)$. P-splines in two dimensions have also been obtained by a Bayesian approach, as shown by Lang and Brezger (2004). These authors regarded the difference matrices [3] as a first or a second order random walk, respectively. Our approach is different from theirs in the replacing of the singular matrix of the differences [3] by a proper variance-covariance matrix of the random coefficients for the knot effects in two dimensions. In doing so, we extend the tensor product of B-spline bases to an individual tree mixed model to account for continuous spatial variability. Thus, the model incorporates a surface that is smoothed in the direction of both columns and rows. Gilmour at al. (1997) modeled the large scale
variation in one dimension of agricultural trials by fitting either polynomials or a cubic smoothing spline. However, in forest genetic trials where trees are planted in squares or rectangles, a large portion of the continuous spatial variation is usually present in the two dimensions. Moreover, it is extremely rare that continuous spatial variability is found only in the direction of the rows or of the columns, and some sort of interaction between rows and columns has to be considered in order to account for such variability (Federer, 1998). Although there exist several statistical methods of smoothing to capture non linearity of the variation in one dimension, methods in two dimensions are less abundant. For such a purpose, Federer (1998) proposed fitting interactions between polynomials for rows and columns. However, polynomials do a poor job when fitting observations in the extremes. Moreover, small changes in the data produce a dramatic effect in the estimated values of the coefficients, and this is specially so for polynomials of higher degree. Additionally, the degree of the polynomial should be selected, which in turn introduces the issue of model selection. Instead, we propose estimating a smoothed surface using penalized splines. The approach is flexible as B-spline functions are locally sensitive to the data and are numerically well conditioned. The variance σ_{b}^{2} was used to smooth the effects of both rows and columns. In the approach of Eilers and Marx (2003) and Lang and Brezger (2004), different variances for rows and columns were used. Lang and Brezger (2004) went further and used a locally adaptive estimator of the dispersion parameters. In future research, we may consider smoothing rows and columns with different dispersion parameters, although it is not clear to us that this approach may be more advantageous than ours regarding the quality of the fit, i.e. the value of the DIC.

The P-splines methodology of Eilers and Marx $(1996,2003)$ consists of using cubic B-splines with equally spaced knots. In this approach, the crucial parameter is the penalty or smoothing factor λ (see [2] and [5]), and the number of knots in the spline is not vital to the fit as long as there are "sufficiently" many (Eilers and Marx, 1996; Cantet et al. 2005). In the mixed model approach to P-splines, λ is the ratio $\sigma_{e}^{2} / \sigma_{b}^{2}$ (Cantet et al. 2005) in [8]. Looking at Table 1 one may infer that the magnitude of σ_{b}^{2} (the denominator of λ) was sensitive to the number of knots, as compared to the other variance components. It is known that the fit of very few knots produces bias, which rapidly decreases as the number of knots increases (Ruppert 2002). Cantet et al. (2005) found almost equal values of the modified Akaike Information criterion for models with $20,40,60,80$, or 120 equally spaced knots. However, Restricted Maximum Likelihood estimators for the variance components did not converge for certain models with 120 knots. For those situations with 120 knots where convergence was attained, there were some inconsistencies in the fit for intervals where no data was recorded. In the current research, increasing the number of knots from 8 to 18 produced a smoother surface (Figure 4). Although the model with $12 \times$ 12 knots displayed the smallest DIC, the difference in DIC between the models with $12 \times$ 12 and 18×18 knots was minor. This was also true for the estimates of $h^{2}{ }_{\text {DBH }}$ obtained from both models: a difference in the third decimal place. In the mixed model approach to P-splines, the covariance structure of the knot coefficients replaces any of the singular matrices of differences [3]. In the current research, the tridiagonal matrix proposed by Durban et al. (2001) is used to model the correlations between the knots for columns and for rows. The formulation is simpler than the dense correlation structures used by Hyndman et al. (2005) and Cantet et al. (2005), where there is complete dependence among all knot
effects. In order to check the impact of the covariance matrix on the fit, we adjusted three models with 12×12 knots differing only in the covariance matrix of knot effects, and run 30000 Gibbs samples. The values of DIC obtained were 2882.33, 2871.58, and 2850.97, for the structures used by Cantet et al. (2005), Hyndman et al. (2005), and Durban et al (2001), respectively, which supports the use of the latter structure for the current data set.

There are several examples of the use of B-spline functions in one dimension when analyzing breeding data. Thus, animal breeders used splines to model functional breeding values (White et al. 1999; Bohmanova et al. 2005) or the effects of management unit and time (Cantet et al. 2005). In forest genetic breeding, Cornillon et al. (2003) used B-splines to model time functional breeding values of clones in Eucalyptus using a fixed effects model. Magnussen and Yanchuk (1994) fitted spline functions to observed data so as to estimate the individual heights at non-recorded times from Douglas-fir trees. The resulting data was then used to predict breeding values at non-recorded ages and genetic dispersion parameters. The fit of a smoothed surface to the progeny trial in E. globulus with tensor product of B-splines instead of the 'a priori' block design, consistently increased the posterior means of σ_{A}^{2} and of $h_{\text {DBH }}^{2}$ (Table 2). The results agree with those of Zas (2006) that accounted for spatial variability using Kriging, and are different from those of Dutkowsky et al. (2002). In the latter case, inconsistent estimates of σ_{A}^{2} were obtained after adjusting an $\operatorname{AR}(1) \times \operatorname{AR}(1)$ covariance structure to the residuals of the model. In our data, the spatial models produced an increase in precision for the estimation of σ_{e}^{2}, which can be noticed by the much lower standard deviations and the narrower values for the 95% high posterior probability density intervals, when compared to the estimate from the model with blocks (Table 1). Moreover, accuracy of breeding values from parents and offspring
calculated with the spatial models were higher than corresponding values estimated from the model with block effects. This result agrees with those of Costa e Silva et al. (2001) for tree height and Zas (2006) for tree diameter. Our results suggest that analysis of data displaying large scale continuous spatial variation, such as the one induced by a petrocalcic layer at variable depth, could hardly be accounted for by blocking techniques.

In the current research, we modeled spatial variability that is continuous and permanent along a site, using an individual tree mixed model with a smoothed surface. In forest genetic evaluation, the spatial variation at the microsite level has been modeled with nearest neighbor techniques (Magnussen 1990; Costa e Silva et al. 2001; Dutkowski et al. 2002, 2006) or with Kriging (Hamann et al. 2002; Zas 2006). Nevertheless, interplant competition may be another source for small scale spatial variation which affects the correlation between neighbors (Magnussen 1994). The mixed model [6] does not account for genetic competition among trees, and this can bias the estimation of σ_{A}^{2} (Cappa and Cantet 2006b). However, the trees used in the analysis were 6 yr-old, so that competition was weak or absent. For those situations where trees are measured at an age where competition effects are sizeable, it would be desirable to fit simultaneously continuous spatial variation and genetic effects of competition.

Acknowledgements

This research was supported by grants of Agencia Nacional de Ciencia y Tecnología (FONCyT PICT 08-09502); Universidad de Buenos Aires (UBACyT G018, 2004-2007), and CONICET (PIP 5338, 2005-2006) of Argentina. The authors would like to thank to

INTA-Soporcel (Instituto Nacional de Tecnología Agropecuaria - Sociedad Portuguesa de Papel S.A., Portugal) for allowing us to use their data.

References

Anderson, T.W. 1973 . Asymptotically efficient estimation of covariance matrices with linear structure. Ann. Statist. 1: 135-141.

Bohmanova, J., Misztal, I., Bertrand, J.K. 2005. Studies on multiple trait and random regression models for genetic evaluation of beef cattle for growth. J. Anim. Sci. 83: 6267.

Cantet R.J.C., Birchmeier A.N., Canaza Cayo A.W., and Fiorett, C. 2005. Semiparametric animal models via penalized splines as alternatives to models with contemporary groups. J. Anim. Sci. 83: 2482-2494.

Cappa, E.P., and Cantet, R.J.C. 2006a. Bayesian inference for normal multiple-trait individual-tree models with missing records via full conjugate Gibbs. Can. J. For. Res. 36: 1276-1285.

Cappa, E.P., and Cantet, R.J.C. 2006b. Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model. Silvae Genetica (submitted).

Christensen, R. 1987. Plane Answer to Complex Questions. The Theory of Linear Models, New York: Springer Verlag.

Costa e Silva, J., Dutkowski, G.W., Gilmour, A.R. 2001. Analysis of early tree height in forest genetic trials is enhanced by including a spatially correlated residual. Can. J. For. Res. 31: 1887-1893.

Cornillon, P.A., Saint-Andre, L., Bouvet, J.M., Vigneron, P., Saya, A., and Gouma R. 2003. Using B-splines for growth curve classification: applications to selection of eucalypt clones. Forest Ecology and Management, 176: 75-85.

De Boor, C. 1993. B(asic)-spline basics. Fundamental Developments of Computer-Aided Geometric Modeling. L. Piegl, ed. Academic Press, San Diego, CA.

Durban, M., Currie I., and Kempton, R. 2001. Adjusting for fertility and competition in variety trials. J. Agric. Sci. (Camb.) 136: 129-140.

Dutkowski, G.W., Costa e Silva, J., Gilmour, A.R., and Lopez, G.A. 2002. Spatial analysis methods for forest genetic trials. Can. J. For. Res. 32: 2201-2214.

Dutkowski, G.W., Costa e Silva J., Gilmour A.R., Wellendorf H., Aguiar A. 2006. Spatial analysis enhances modeling of a wide variety of traits in forest genetic trials. Can. J. For. Res. 36: 1851-1870.

Eilers, P.H.C., and Marx, B.D. 1996. Flexible smoothing with B-splines and penalties (with comments and rejoinder). Stat. Sci. 11: 89-121.

Eilers, P.H.C., and Marx, B.D. 2003. Multivariate calibration with temperature interaction using two-dimensional penalized signal regression. Chemometr. Intell. Lab. Syst. 66: 159-174.

Federer, W.T. 1998. Recovery of interblock, intergradient, and intervarietal information in incomplete block and lattice rectangle designed experiments. Biometrics, 54: 471-481.

Fu, Y.B., Yanchuk, A.D., and Namkoong, G. 1999a. Incomplete block designs for genetic testing: some practical considerations. Can. J. For. Res. 29: 1871-1878.

Fu, Y.B., Yanchuk, A.D., and Namkoong, G. 1999b. Spatial patterns of tree height variations in a series of Douglas-fir progeny trials: implications for genetic testing. Can. J. For. Res. 29: 714-723.

Gilmour A.R., Cullis B.R., and Verbyla A.P. 1997. Accounting for Natural and Extraneous Variation in the Analysis of Field Experiments. Journal of Agricultural, Biological, and Environmental Statistics, 2: 269-293.

Green, P. J., and Silverman, B. W. 1994. Nonparametric Regression and Generalized Linear Model. Chapman \& Hall, London, UK.

Gwaze, D.P., and Woolliams, J.A. 2001. Making decisions about the optimal selection environment using Gibbs sampling. Theor. Appl. Genet. 103: 63-69.

Hamann, A., Koshy, M., and Namkoong, G. 2002. Improving precision of breeding values by removing spatially autocorrelated variation in forestry field experiments. Silvae Genetica, 51: 210-215.

Harville, D.A. 1997. Matrix algebra from a statistician's perspective. Springer-Verlag. New York.

Henderson, C.R. 1984. Applications of Linear Models in Animal Breeding. Canada, University of Guelph, Guelph, Ont.

Hobert, J.P., and Casella, G. 1996. The effects of improper priors on Gibbs sampling in hierarchical linear models, J. Amer. Statist. 91: 1461-1473.

Hyndman, R.J., King, M.L., Pitrun, I., and Billah, B. 2005. Local lineal forecasts using cubic smoothing splines. Aust. N. Z. J. Stat. 47: 87-99.

Kass, R.E., Carlin, B.P., Gelman, A., and Neal, R.M. 1998. Markov chain Monte Carlo in practice: a roundtable discussion. Amer. Stat. 52: 93-100.

Lang, S., Brezger, A. 2004. Bayesian P-Splines. Journal of Computational \& Graphical Statistics, 13: 183-212.

Libby, W.J., Cockerham, C.C. 1980. Random non-contiguous plots in interlocking field layouts. Silvae Genetica, 29: 183-190.

Liu, J., and Burkhart, H.E. 1994. Spatial characteristics of diameter and total height in juvenile loblolly pine (Pinus taeda L.) plantations. For. Sci. 40: 774-786.

Lopez, G.A., Potts, B.M., Dutkowski, G.W., Rodriguez Traverso, J.M. 2001. Quantitative genetics of Eucalyptus globulus: Affinities of land race and native stand localities. Silvae Genetica, 50: 244-252.

Magnussen, S. 1990. Application and comparison of spatial models in analysing treegenetics field trials. Can. J. For. Res. 20: 536-546.

Magnussen, S. 1993. Bias in genetic variance estimates due to spatial autocorrelation. Theor. Appl. Genet. 86: 349-355.

Magnussen, S. 1994. A method to adjust simultaneously for statial microsite and competition effects. Can. J. For. Res. 24: 985-995.

Magnussen, S., and Yanchuk, A.D. 1994. Time trends of predicted breeding values in selected crosses of coastal Douglas-fir in British Columbia: a methodological study. For. Sci. 40: 663-685.

Mark, B.D., and Eilers, P.H. 2005. Multidimensional penalized signal regression. Technometrics, 47: 13-22.

Robinson, G.K. 1991. That BLUP is a good thing: The estimation of random effects. Statistical Science, 6: 15-32.

Ruppert, D. 2002. Selecting the number of knots for penalized splines. Journal of Computational and Graphical Statistics, 11: 735-757.

Ruppert, D., Wand, M.P., and Carroll, R.J. 2003. Semiparametric Regression. Cambridge Univ. Press, Cambridge, UK.

Saenz-Romero, C., Nordheim, E.V., Guries, R.P., and Crump, P.M. 2001. A Case Study of a Provenance/Progeny Test Using Trend Analysis with Correlated Errors and SAS PROC MIXED. Silvae Genetica, 50: 127 - 135 .

Silverman, B. 1986. Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.

Smith, B.J. 2003. Bayesian Output Analysis Program (BOA) version 1.0 user's manual. Available from http://www.public-health.uiowa.edu/boa/Home.html.

Soria F., Basurco, F., Toval, G., Silió, L., Rodriguez, M.C., and Toro, M. 1998. An application of Bayesian techniques to the genetic evaluation of growth traits in Eucalyptus globulus. Can. J. For. Res. 28: 12861294.

Sorensen, D., and Gianola, D. 2002. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Springer-Verlag, New York.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and Van der Linde, A. 2002. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society Series B, 64: 583-639.

Thomson, A.J. and El-Kassaby Y.A. 1988. Trend surface analysis of a Douglas-fir provenace-progeny transfer test. Can. J. For. Res. 18: 515-520.

Verbyla, A.P., Cullis, B.R., Kenward, M.G. and Welham, S.J. 1999. The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion). Applied Statistics, 48: 69-311.

Waldmann, P., and Ericsson, T. 2006. Comparison of REML and Gibbs sampling estimates of multi-trait genetic parameters in Scots pine. Theor. Appl. Genet. 112: 1441-1451.

Wand, M.P. 2003. Smoothing and mixed models. Comput. Stat. 18: 223-249.

Zas, R. 2006. Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials. Tree Genetics and Genomes, 2: 177-185.

Zeng, W., Ghosh, S.K., Li, B. 2004. A Blocking Gibbs Sampling Method to Detect Major Genes Affecting a Quantitative Trait for Diallel Mating Design. Genetical Research 84: 1-12.

White, I.M.S., Thompson, R., Brotherstone, S. 1999. Genetic and environmental smoothing of lactation curves with cubic splines. J. Dairy Sci. 82: 632-638.

Figure 1: Spatial patterns of the residuals of tree DBH. The colors of the dots represent the 616 magnitude of the residuals: the blacker the dot, the bigger the residual.

617

Figure 2: Plot of the residuals after fitting provenance and additive genetic effects: a) number of column for different rows and \mathbf{b}) number of rows for different columns.
b)

a)

621 Figure 3: Sample variogram showing the interaction between rows and columns.

Figure 4: Plot of the estimates of block effects (Model 1) and the surfaces from the fitting of tensor product B-splines with either 8 (Model 2), 12 (Model 3), or 18 (Model 4) knots.

Table 1: Posterior statistics for the additive genetic variance $\left(\sigma_{\mathrm{A}}^{2}\right)$, the variance of the B spline coefficients $\left(\sigma_{b}^{2}\right)$, the error variance $\left(\sigma_{e}^{2}\right)$, and the heritability of $\operatorname{DBH}\left(h^{2}{ }_{\text {DBH }}\right)$.

Model $^{\boldsymbol{a}}$	Parm. b	Mean	Median	Mode	SD c	$\mathbf{9 5 \%}$ HPD	
$\mathbf{1}$	σ_{A}^{2}	1.835	1.801	1.609	0.37149	$1.291-2.503$	ESS e
	σ_{e}^{2}	23.043	20.144	14.070	8.69251	$15.182-40.520$	87274
	$h_{\text {DBH }}^{2}$	0.080	0.079	0.084	0.02520	$0.040-0.123$	43572
$\mathbf{2}$	σ_{A}^{2}	3.596	3.480	2.642	0.98973	$2.191-5.381$	16181
	σ_{b}^{2}	17.351	16.558	16.875	5.17173	$10.457-26.887$	169158
	σ_{e}^{2}	11.156	11.191	10.476	1.01469	$9.432-12.760$	24207
	$h_{\text {DBH }}^{2}$	0.243	0.237	0.259	0.06401	$0.151-0.358$	16254
$\mathbf{3}$	σ_{A}^{2}	3.754	3.643	2.933	1.00390	$2.310-5.573$	16474
	σ_{b}^{2}	22.317	21.649	23.716	5.47972	$14.682-32.132$	109973
	σ_{e}^{2}	10.275	10.301	9.900	1.01309	$8.558-11.871$	23568
	$h_{\text {DBH }}^{2}$	0.267	0.261	0.244	0.06872	$0.167-0.389$	16519
$\mathbf{4}$	σ_{A}^{2}	3.661	3.558	3.439	0.98475	$2.254-5.458$	16526
	σ_{b}^{2}	21.758	21.409	18.998	4.17318	$15.463-29.223$	81522
	σ_{e}^{2}	10.312	10.339	9.683	1.00670	$8.595-11.920$	24305
	h_{DBH}^{2}	0.262	0.256	0.205	0.06706	$0.164-0.383$	16588

Note:

${ }^{a}$ Model 1: blocks fitted as fixed effects.
Model 2: P-splines with 8 knots for rows and 8 knots for columns.
Model 3: P-splines with 12 knots for rows and 12 knots for columns.
Model 4: P-splines with 18 knots for rows and 18 knots for columns.
${ }^{\text {b }}$ Parm. $=$ Parameter.
${ }^{c} \mathbf{S D}=$ standard deviation.
${ }^{d}$ HPD $=$ high posterior density interval.
${ }^{e}$ ESS $=$ effective sample size.

[^0]: Eduardo P. Cappa ${ }^{12^{*}}$ and Rodolfo J. C. Cantet ${ }^{13}$
 ${ }^{1}$ Department of Animal Production, University of Buenos Aires, Avenida San Martín 4453, C1417DSQ Buenos Aires, Argentina.
 ${ }^{2}$ Doctoral fellow, "Fondo para la Investigación Científica y Tecnológica" (FONCyT),
 Argentina.
 ${ }^{3}$ "Consejo Nacional de Investigaciones Científicas y Técnicas" (CONICET), Argentina.

 * Corresponding author

 Eduardo Pablo Cappa
 Departamento de Producción Animal, Facultad de Agronomía Universidad de Buenos Aires
 Av San Martín 4453
 C1417DSQ Buenos Aires
 Argentina
 ph: +541145248000 ext. 8192
 fax: +54 1145148735 or 8737
 e-mail: ecappa@mail.agro.uba.ar

