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Abstract 27 

Unaccounted spatial variability leads to bias in estimating genetic parameters and 28 

predicting breeding values from forest genetic trials. Previous attempts to account for 29 

continuous spatial variation employed spatial coordinates in the direction of the rows (or 30 

columns). In this research, we use an individual tree mixed model and the tensor product of 31 

B-spline bases with a proper covariance structure for the knot effects to account for spatial 32 

variability. Dispersion parameters were estimated using Bayesian techniques via the Gibbs 33 

sampling. The procedure is illustrated with data from a progeny trial of E. globulus. Four 34 

different models were used in the sequel. The first model included block effects and the 35 

three other models included a surface on a grid of either 8 × 8, 12 × 12, or 18 × 18 knots. 36 

The three models with B-splines displayed a sizeable lower value of the Deviance 37 

Information Criterion than the model with blocks. Also, the mixed models fitting a surface 38 

displayed a consistent reduction in the posterior mean of 2

eσ , an increase in the posterior 39 

means of 2

Aσ and h
2
DBH, and an increase of 66 % (for parents) or 60% (for offspring) in the 40 

accuracy of breeding values. 41 
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Introduction 42 

Forest genetic trials are prone to a high degree of environmental heterogeneity as 43 

compared to other cultivated plants (Libby and Cockerham, 1980): trees are large living 44 

creatures and occupy more space than most cultivated plant species. Moreover, trees are 45 

often planted in places with heterogeneous levels of fertility, humidity, soil depth, or slope. 46 

Although spatial heterogeneity is a nuisance effect in forest genetic evaluation where the 47 

main goal is the prediction of breeding values, ignoring such a source can lead to biases in 48 

the estimation of genetic parameters and the prediction of individual additive genetic 49 

effects (breeding values, Magnussen 1993, 1994). To account for environmental gradients, 50 

tree breeders have devised forest trials using randomized complete blocks or incomplete 51 

block designs. However, setting fixed limits for the blocks makes it difficult to account for 52 

continuously varying environmental factors. Additionally, establishing a priori a design 53 

that properly account for all sources of environmental heterogeneity may be a hopeless task 54 

as “environmental variation is never known prior to establishment” (Fu et al. 1999a). 55 

Alternatively, the spatial variation can be accounted for a posteriori within the model of 56 

evaluation. In these so called ‘spatial models’, variability has two main sources: the local 57 

trend, or small-scale variation, and the global trend or large-scale variation across a spatial 58 

gradient. The two sources are observable in forest genetic trials: either component alone or 59 

in combination with each other (e.g., Fu et al. 1999b;  Costa e Silva et al. 2001; Dutkowsky 60 

et al. 2002; Hamann 2002; Dutkowsky et al. 2006).  61 

Models that account for continuous spatial variation include spatial coordinates 62 

expressed as either classification variables or covariables. The latter are non-stochastic 63 

functions such as polynomials (Federer 1998) or smoothing splines (Verbyla et al. 1999). 64 
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Costa e Silva et al. (2001) and Dutkowsky et al. (2002) considered the global trend in one 65 

dimension, either row-wise or column-wise, after adjusting first order autoregressive 66 

(AR(1)) and separable covariance structures (Gilmour et al. 1997). Costa e Silva et al. 67 

(2001) proposed the use of a classification variable for columns. Also, Dutkowsky et al. 68 

(2002) modeled global variation with linear models of fixed effects that included spatial 69 

coordinates in one dimension, fitted as quadratic polynomials or cubic smoothing splines 70 

(Verbyla et al. 1999). In the latter case, the resulting variogram was not stationary, so that 71 

patterns of unaccounted variability were still present in the residuals, most probably 72 

associated with rows by columns interactions (Dutkowsky et al. 2002, p. 2205). Therefore, 73 

the analysis of forest genetic trials where continuous spatial variation may develop in two 74 

dimensions, using classification variables or covariables only in the direction of the rows 75 

(or columns), may not completely account for the spatial variability. Thomson and El-76 

Kassaby (1988) fitted sixth order degree polynomials in two dimensions by least-squares to 77 

compare different provenances of Douglas-fir. The use of polynomials for the analysis in 78 

two dimensions (trend analysis) of forest genetic data can also be found in the work of Liu 79 

and Burkhart (1994) and Saenz-Romero et al. (2001). However, the fit of polynomials 80 

suffer from several drawbacks (Green and Silverman 1994, p. 2). First of all, the fit is 81 

global and not local, which means that: 1) the method is not capable of accounting for local 82 

variations present in the data; 2) few influential observations exert a large influence in the 83 

resulting fit; 3) the fit in the extremes is usually poor. Another serious drawback with 84 

polynomials is its numerical instability as the order of the polynomial increases. 85 

 Splines are a more efficient approach to the use of polynomials. They are segmented 86 

polynomial functions that are locally fitted such that the resulting function is differentiable 87 

at the joints of the segments (knots), up to the order of fit. Splines are able to capture most 88 
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sinuosities present in the data and do not suffer from numerical instability. Eilers and Marx 89 

(1996) introduced penalized splines in one dimension using B-splines with equally spaced 90 

knots, and a linear model approach with a roughness penalty consisting on the differences 91 

among the parameters, i.e. the effects of the knots. T. Speed (see Robinson 1991) first 92 

pointed out the connection between splines and mixed models, a subject further expanded 93 

by Ruppert et al. (2003) and Wand (2003). Cantet et al. (2005) approached P-splines in one 94 

dimension using proper covariance structures rather matrices of differences, in an animal 95 

breeding context. Eilers and Marx (2003) extended their methodology to estimate a surface 96 

along two dimensions, using the tensor product of B-splines. The goal of the present 97 

research is to show how to fit a surface using the tensor product of B-spline bases, to 98 

account for continuous spatial variation in an individual tree mixed model for forest genetic 99 

evaluation. To do that, we superimpose a covariance structure for the knot effects in a two-100 

dimensional grid. As in some recent contributions to forest breeding (Soria et al. 1998; 101 

Gwaze and Woolliams 2001; Zeng et al. 2004; Cappa and Cantet 2006a; Waldmann and 102 

Ericsson 2006), we employed the Bayesian approach via Gibbs sampling to make 103 

inferences in all dispersion parameters of the model. Developments are illustrated by means 104 

of a progeny trial data on diameter at breast height in Eucalyptus globulus ssp. globulus. 105 

The resulting estimates of all dispersion parameters for mixed models that include the fitted 106 

surface are finally compared with corresponding estimates from the classical model 107 

including blocks. 108 

 109 
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Methods 110 

Two-dimensional tensor product of B-splines 111 

We first briefly introduce penalized splines (P-splines) in one dimension as 112 

suggested by Eilers and Marx (1996). Then, we take the approach of Eilers and Marx 113 

(2003) and Green and Silverman (1994) and extend P−splines to two dimensions using the 114 

tensorial product of P−splines.  115 

Eilers and Marx (1996) advocated using B-splines with equally spaced knots to 116 

obtain penalized splines. B-splines are local basis functions, consisting of polynomial 117 

segments of degree d, in general quadratic or cubic, that have d − 1 continuous derivatives 118 

at the joining points, or knots. A B-spline of degree d is positive on a domain spanned by d 119 

+ 2 knots and is zero elsewhere. All in all, d + 1 B-spline coefficients are nonzero. Eilers 120 

and Marx (1996) introduced a penalty that affects first or second differences of B-spline 121 

coefficients. The penalty controls the degree of smoothness while fitting the function. Let y 122 

and x be vectors of length n containing the observed and explanatory variables, 123 

respectively, and let s (x) be a spline function written as: 124 

( ) ( )
1

k

i i

i

x
=

=∑s x B b      [1] 125 

where ( ) ( ) ( )( )1 2
, ,..., '

i k
x x x=B B B B  is a column vector with B-spline bases (De Boor, 126 

1993), and ( )1 2
'

i k
=b b ,b , ...,b  denotes the vector of spline coefficients in one dimension. In 127 

matrix form, expression [1] can be written as Bb, being B the n × k matrix that contains 128 

the
i
B ’s, and b is the parametric vector (k × 1) containing the 

i
b ’s to form s (x). The 129 

functional [1] is generally fitted by least-squares with an additive penalty. Eilers and Marx 130 
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(1996) observed that the penalized estimator of b is the solution of the following system of 131 

equations: 132 

( ) ɵd d
+ =' ' '

B B D D b B yλ      [2] 133 

where the positive scalar λ controls the amount of smoothing and Dd is the matrix of 134 

differences of order d. For d = 1 and d = 2, we respectively have:  135 

1 2

1 1 0 0 1 2 1 0 0
0 1 1 0 ; 0 1 2 1 0
0 0 1 1 0 0 1 2 1

   
= =   
      

D D
− −

− −
− −

   [3] 136 

Ruppert et al. (2003) and Wand (2003) discussed the connection between P-splines and 137 

mixed models (Henderson, 1984). The smoothing parameter λ is seen as the ratio of the 138 

error variance to the variance of the B-spline coefficients bi. Moreover, 'D D is interpreted 139 

as a g-inverse of the covariance matrix of the B-spline coefficients (Cantet et al. 2005), and 140 

acts as a singular penalization matrix.  141 

Tensor products of B-splines allow a natural extension of one dimensional P-spline 142 

smoothing to two dimensions by means of the Kronecker product of single structures. A 143 

more rigorous approach can be found in Green and Silverman (1994, p. 155-159). The 144 

tensor product of two univariate B-splines along the rows (r) and columns (c) is defined as 145 

the r × c rectangle in 2ℜ such that ( ) ( ) ( ),
kl k l
r c r c= Br BcΤΤΤΤ , where ( )k

rBr  and ( )l
cBc  are 146 

B-spline bases for the row (k = 1, 2, …, nxr) and column (l = 1, 2, …, nxc) knot effects, 147 

respectively. If row and column knots are chosen to be equally spaced, the r × c space can 148 

be divided in small rectangular panels such that[ ] [ ]+6 +6k k l l
r r c c×, , . Let S =[ ]kl

γγγγ  be the nxr × 149 

nxc matrix containing the coefficients from the tensor product of B-splines that have to be 150 
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estimated. Then, for a given set of knots the surface ( )( ),r cα  can be approximated using 151 

the following matrix expression 152 

( ){ }vec ,r cα = B b           [4] 153 

where B has dimension ( )r c
nx nx× ×n  and is equal to ( ) ( )' '1 1

c rr nx nx c
= ⊗ ⊗⊙B B B . The 154 

notation vec stands for the operator that results from stacking the columns of a matrix into a 155 

vector, and the symbols ⊗ and⊙ indicate the Kronecker and Hadamard products of 156 

matrices, respectively (Harville, 1997).  157 

In analogy to what they had done for one dimension (Eilers and Marx, 1996), Eilers 158 

and Mark (2003) and Marx and Eilers (2005) proposed a two-dimensional penalized 159 

estimation of a surface. Let 
r

λ and 
c

λ be the parameters controlling the degree of 160 

smoothness for rows and columns, respectively, whereas Dr and Dc are the respective 161 

difference matrices [3]. Then, the solution for ɵb  is obtained by solving the equations 162 

( ) ( )( ) ɵ' '

r r r c c c
r

+ ⊗ + ⊗ =
r c

' '

nx nx
B B I D D D D I b B yλ λ     [5] 163 

The expression above is similar to the system in one dimension where B is replaced by Br 164 

or Bc, and 'D Dλ  is replaced by ( ) ( )' '

r r r c c c
r

⊗ + ⊗
r cnx nx

I D D D D Iλ λ . In the next section, 165 

we show how to fit data in two dimensions using the tensor product of B-splines by means 166 

of a mixed linear model. 167 

 168 

Mixed model representation of a two-dimensional tensor product of B-splines 169 

In forest genetic trials trees are usually arranged in regular grids arrayed in rows and 170 

columns. In order to position any tree, let r and c be the row and column coordinates, 171 
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respectively, measured in meters or degrees. Let Y be an nr (number of rows) × nc (number 172 

of columns) containing the observations for a trait (such as height, or diameter). Consider 173 

also the vector y such that y = vec(Y), so that data are ordered by column within row. Then, 174 

an individual tree mixed model with a smoothed surface to account for environmental 175 

heterogeneity is equal to 176 

y  =  X β  + B b  + Z a  +  e      [6] 177 

In [6], β is a p × 1 vector of fixed effects associated to y by the incidence matrix X (n × p) 178 

such that r[X] = p. In case r[X] < p, it is always possible to find a reparametrization that 179 

turns X into a matrix of full-column rank (Christensen, 1987). The random q × 1 vector a 180 

contains the breeding values, and is related to y by the incidence matrix Z (of order n × q). 181 

The expectation of a is 0 and the covariance matrix is A σ2
A where A is the additive 182 

relationship matrix (Henderson, 1984) among trees, and σ2
A is the additive genetic 183 

variance. The distribution of the random vector b containing the coefficients of the tensor 184 

product of B-splines is such that ( )2, bN σ∼b 0 U . The scalar 2

bσ  is the variance of the 185 

coefficients for rows and columns and U is the covariance structure in two-dimensions. 186 

Finally, random error terms are included in the n × 1vector e, which is distributed as 187 

( )2, eN∼e 0 I σ  and 2

eσ is the error variance. 188 

The covariance structure U plays an important role in model [6]. The matrix should 189 

reflect the correlation decay among B-spline knots that are further apart, either row or 190 

column-wise. A possible choice for U is r c⊗Σ ΣΣ ΣΣ ΣΣ Σ , a Kronecker product of matrices for the 191 

rows ( rΣΣΣΣ ) and for the columns ( cΣΣΣΣ ). If U is a linear covariance structure (Anderson, 1973), 192 

the estimation process is simplified and there is only one parameter to estimate: 2

bσ . Then, 193 
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estimation can be performed with simpler methods and algorithms, i.e. REML-EM or 194 

Gibbs sampling.  The challenge is to find a U that is informative enough among the 195 

correlation decay among knot effects, at the same time that does not depend on extra 196 

parameters. In this regard, we will set rΣΣΣΣ  and cΣΣΣΣ  to be equal to the one-dimensional 197 

covariance structure originally proposed by Green and Silverman (1994, p. 13) and then 198 

used by Durban et al. (2001) to fit a fertility trend. In this tridiagonal matrix, correlations 199 

are non-zero for neighbor knots, and are 0 otherwise. More explicitly, if
ijς  is element ij of 200 

any of the matrices rΣΣΣΣ or cΣΣΣΣ , diagonals are 4 6iiς = , whereas off-diagonals are either 201 

1, , 1 1 6i i i iς ς+ += =  or 0ijς = for 2i j− ≥ , i = j = 1, 2, …, nxr or nxc . Thus, besides being 202 

positive definite, r c⊗Σ ΣΣ ΣΣ ΣΣ ΣU =  is strictly diagonally dominant as ii ijj i
ς ς

≠
>∑  for every i. 203 

To exemplify, suppose nxr = nxc = 4, then 204 

4 1 0 0

1 4 1 01

0 1 4 16

0 0 1 4

r c

 
 
 =
 
 
 

Σ = ΣΣ = ΣΣ = ΣΣ = Σ  205 

and  r c⊗Σ ΣΣ ΣΣ ΣΣ ΣU =  is equal to 206 
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16 4 0 0 4 1 0 0 0 0 0 0 0 0 0 0

4 16 4 0 1 4 1 0 0 0 0 0 0 0 0 0

0 4 16 4 0 1 4 1 0 0 0 0 0 0 0 0

0 0 4 16 0 0 1 4 0 0 0 0 0 0 0 0

4 1 0 0 16 4 0 0 4 1 0 0 0 0 0 0

1 4 1 0 4 16 4 0 1 4 1 0 0 0 0 0

0 1 4 1 0 4 16 4 0 1 4 1 0 0 0 0

0 0 1 4 0 0 4 16 0 0 1 4 0 0 0 0

0 0 0 0 4 1 0 0 16 4 0 0 4 1 0 0

0 0 0 0 1 4 1 0 4 16 4 0 1 4 1 0

0 0 0 0 0 1 4 1 0 4 16 4 0 1 4 1

0 0 0 0 0 0 1 4 0 0 4

1

6

16 0 0 1 4

0 0 0 0 0 0 0 0 4 1 0 0 16 4 0 0

0 0 0 0 0 0 0 0 1 4 1 0 4 16 4 0

0 0 0 0 0 0 0 0 0 1 4 1 0 4 16 4

0 0 0 0 0 0 0 0 0 0 1 4 0 0 4 16

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 207 

In this example non-zero elements of U are correlations between neighbor knots. 208 

Take for example, the second knot (row 2 of U) having as proximal neighbors the knots 1, 209 

3 and 6, and as diagonal neighbors the knots 5 and 7. Notice that correlations with 210 

neighbors in proximal positions are stronger (4/6) than with neighbors located diagonally 211 

(1/3). Implicit is the assumption that the spacing between both columns and rows is equal. 212 

There other structures that allow modeling a gradual decay in correlation as knots are 213 

separated further in the direction of the rows or of the columns, such as those proposed by 214 

Hyndman et al. (2005) or Cantet et al. (2005). Finally, given the random effects in [6], the 215 

covariance matrix y (say V) is as follows:  216 

A

2 2 2' ' b n e= + +V Z AZ BU B Iσ σ σ
                                      [7] 217 

 and mixed model equations (Henderson, 1984) for [6] are 218 

1

1

ˆ
' ' ' '

ˆ' ' ' '

ˆ' ' ' '

−

−

    
    =    
         

X X X B X Z X y

B X B B+U B Z b B y

Z X Z B Z Z + A a Z y

λ

α

ββββ

   [8] 219 
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where 2 2

e b=λ σ σ  and 2 2

Ae=α σ σ . Notice that in the Bayesian view of the mixed linear 220 

model (Sorensen and Gianola, 2002) the likelihood of the data is proportional to 221 

( ) ( ) ( ) ( )
1

2
2

2 1
, , exp 'e

e

p
−  

| ∝ σ − − − − − − 2σ 
β β βy a b y X Za Bb y X Za Bb  [9] 222 

 223 

Bayesian estimation 224 

 The Bayesian approach via Gibbs sampling was used to estimate the parameters in 225 

model [6] (Sorensen and Gianola, 2002). We now specify the prior distributions, as well as 226 

the joint and marginal conditional posterior densities. 227 

Specification of prior distributions: Conjugate prior densities were chosen for all 228 

parameters. To reflect a prior state of uncertainty for the fixed effects and to keep a proper 229 

posterior distribution (Hobert and Casella 1996), we set β ~ Np (0, K) and K is a diagonal 230 

matrix with very large elements (kii >10
8
). Therefore, this prior density is proportional to: 231 

(
1 2

12

2
1= 1

exp
p p

i
ii

ii ii

p k
k

−

=

 
| )∝   

 
∑∏

-

K
β

β     [10] 232 

The vector of the tensor product of B-spline coefficients b is distributed a priori as b ~ 233 

Nb(0, 
2

bU σ ), so that: 234 

( ( )2 2 2
2

'
σ σ exp

2σ

nx*nx

bb

b

p

−1
−

| ) −
 
 
 

b U b
b ∝                            [11] 235 

The prior density for the vector of breeding values is a ~ Nq (0, G0 ⊗A) (see (13.38) in 236 

Sorensen and Gianola, 2002, p. 578), so that: 237 

( ( )2 2 2
AA 2

A

'
σ σ exp

2σ

q

p

−1
−

| )∝ −
 
 
 

a A a
a                               [12] 238 
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Following Sorensen and Gianola (2002), we chose to use independent scaled inverted chi-239 

square densities as prior distributions for the variance components σ2
b, σ2

A and σ2
e: 240 

( ( )
1

2

exp
2

b

b b
b b b b

b

p

υ 
− +   2 

2 υ δ
σ |υ , δ )∝ σ −

σ

 
 
 

2 2

2                                    [13] 241 

( ( )
A 1
2

A A
A A A A

A

exp
2

p

υ 
− +   2 

2 υ δ
σ |υ , δ )∝ σ −

σ

 
 
 

2 2

2                                     [14] 242 

( ( )
1

2

exp
2

e

e e
e e e e

e

p

υ 
− +   2 

2 υ δ
σ |υ , δ )∝ σ −

σ

 
 
 

2 2

2                                      [15] 243 

Parameters in the densities [13], [14], and [15], are the hypervariances δ2
b, δ2

A and δ2
e, and 244 

the degrees of freedom υb, υA and υe, respectively. 245 

Joint and conditional posterior densities: By multiplying [9] with [10], [11], [12], [13], 246 

[14], and [15], the joint posterior density of all parameters is proportional to: 247 

( ), , , , , ,
bb e e b ep 2 2 2 2 2 2

Α Α Ασ ,σ ,σ | υ , υ , υ δ δ ,δ ∝β a b y  248 

( ) 2

2
1 12 2

22σ
1

σ exp ( ) ' ( ) exp
e

n p

i
e

i iik

−
−

=

       
∑

β
β βy X Bb Za y X Bb Za− − − − − − −  249 

( ) ( ) ( )
1

2

2 22 2
A2 2

A

' '
σ exp σ exp

2 2σ
exp

2σ

b

nx*nx q
b b

b b

b b

υ 
− +   2−1 −1  − −

− −
υ δ

σ −
σ

    
     

    

2

2

b U b a A a

 

250 

( ) ( )
A 11

22

A A
A

A

exp exp
2 2

e

e e
e

e

υυ   
− +− +       22    υ δυ δ

σ − σ −
σ σ

  
   
   

2 2

2 2
              [16] 251 

Inference on any parameter by means of the Gibbs sampler requires conditional posterior 252 

densities in close form. The joint conditional density of β and b, and a is equal to 253 
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1

2 2 2 1

A

1

' ' '

, σ , σ ,σ , ' ' '

' ' '

~b e N

−

−

−

      
      λ      
      α      

β β X X X B X Z

b y b B X B B+U B Z

a a Z X Z B Z Z + A

  [17] 254 

Vectors β̂ , b̂  and â  are the solutions to equations [8]. The conditional posterior distribution 255 

of σ2
A is scaled inverted chi-square 256 

( ) ( )2 22 2 2
A A Aσ , , , σ , σ , nv -b ep ,| ∝ Ι χ υβ ɶɶb a y δ    [18] 257 

with parameters A Aq+υ = υɶ  and ( )1

Α Α Α Α´2 − 2δ = +ɶ ɶa A a υ υδ . Also, for σ2
b we have 258 

( ) ( )2 22 2 2
Aσ , , , σ , σ , nv -b e b bp ,| ∝ Ι χ υβ ɶɶb a y δ    [19] 259 

with *b bnx nxυ = + υɶ and ( )1 2´b b b bυ2 −δ = +ɶ ɶbU b υ δ . Finally, the error variance has the 260 

following conditional posterior 261 

( ) ( )
2

22

2

2 2
A

2
1

2

, , , , , exp
2

e

e e
e e

e

b

n

p

 
 
  
 

σ σ

+υ +− +
 υ δσ | ∝ σ − σ 

β
ɶɶ

a b y    [20] 262 

with e en+υ = υɶ degrees of freedom and scale parameter ( )2 2´e e e eδ = + υ δ υɶ ɶe e . At any 263 

iteration of the Gibbs algorithm, we first sampled from distribution [17], then from [20], 264 

then from [18], and finally from [19], to start the process back again. A program was 265 

written in FORTRAN to perform all calculations. 266 

 267 

A working example: Analysis of an E. globulus progeny trial 268 

Data 269 

A Eucalyptus globulus ssp. globulus progeny trial was used in the study. The data 270 

were collected at Licenciado Matienzo (lat. 37º 59' 578'' S long. 59º 00' 107'' W), in the 271 
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southeastern part of Buenos Aires province, Argentina, where E. globulus has traditionally 272 

being planted (Lopez et al. 2001). The soil was a fine Petrocalcic Paleudoll, with 273 

subsurficial petrocalcic horizon (locally known as “tosca”) at variable depth. There were 274 

1080 trees from seventy two seed lots: 36 open pollinated families from 8 native stand sites 275 

in Australia, 30 open pollinated families and 6 bulk collections from land race from 276 

Argentina, Portugal, Spain and Chile (Lopez et al. 2001). After including all known genetic 277 

relationships, a total of 1148 individual trees were used in the pedigree file. The trait was 278 

diameter at breast height (1.3 m, DBH), measured when trees were 6 year-old in cm. Trees 279 

were planted in single-tree plots on a rectangular grid of 32 rows and 36 columns (93 m × 280 

105 m) arrayed in squares of 3 by 3 meters, with 15 replicates per family. Then, rows have 281 

coordinates ri, i = 1, 2, …, R = 32 and columns coordinates cj, j = 1, 2, …, C = 36. For the 282 

purpose of model fitting, row (r) and column (c) spatial coordinates were expressed in 283 

meters and the origin was taken to be the north corner. The first tree (r = 1, c = 1) was set to 284 

coordinates (0, 0), so that R was equal to 93 m and C to 105 m. 285 

 286 

Models of analysis 287 

Four individual additive tree models were evaluated. All models included a fixed 288 

effect of genetic group to account for the means of the different origins of parents, random 289 

additive genetic effects (breeding values), and random errors. Model 1 also included fixed 290 

block effects. In the other three models (2, 3, and 4), a surface was fitted using the tensor 291 

products of cubic B-splines. These models differ in the number of knots: 8 × 8, 12 × 12 and 292 

18 × 18, for models 2, 3 and 4, respectively. The coefficients for the cubic B-splines in B 293 

were calculated using the recursive algorithm of De Boor (1993), and the order of the 294 
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resulting matrix was n × (nxr × nxc). Accordingly, the vector b was of order ( )r c
nx nx× × 1, 295 

and the covariance structure U of order (nxr × nxc ) × (nxr × nxc) . The Deviance Information 296 

Criterion (DIC, Spiegelhalter et al. 2002) was employed to compare the fit from different 297 

models. The model with the smallest value of DIC should be favored, as this indicates a 298 

better fit and a lower degree of model complexity. Numerical details for the calculus of 299 

DIC in individual tree models were given by Cappa and Cantet (2006a). 300 

Further model comparison was provided by the accuracy of prediction of breeding 301 

values, which was computed using the following expression: 302 

2

A

1 PEV−=r
σ

 303 

The acronym PEV stands for ‘prediction error variance’ (Henderson, 1984) of predicted 304 

breeding values using the “Best linear unbiased predictors” (BLUPs) of parent and 305 

offspring. The PEV is calculated as the diagonal elements of the inverse of the coefficient 306 

matrix from the mixed model equations (Henderson, 1984) in [8]. The required variance 307 

components to set up the mixed model equations were those estimated from the Bayesian 308 

analysis. Spearman correlations were also estimated to compare predicted breeding values 309 

from different models. 310 

 311 

Spatial analysis of residuals 312 

In order to identify spatial patterns in the data, we examined the spatial distribution 313 

and the variogram of the residuals as suggested by Gilmour et al. (1997), using a model 314 

with fixed genetic groups and random breeding values. The distribution of the DBH 315 

residuals is displayed in Figure 1. The color intensity represents the magnitude of the 316 
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residuals: the darker the dot, the larger the residual value. Additionally, residuals were 317 

plotted against row and column position, to detect dissimilar patterns in any row (across 318 

columns, Figure 2a), or in any column (across rows, Figure 2b). To exemplify, only rows 1, 319 

16, and 32, and columns 1, 16 and 32, are displayed. Notice the different residual patterns 320 

across rows or columns, which indicate the presence of interaction between row and 321 

column position and the need for a two-dimensional smoothing. This effect is also observed 322 

in the sample variogram displayed in Figure 3, where there is a consistent increase in the 323 

semivariance as the displacements in the row and column directions increase. Note the 324 

steeper slope row-wise (on the left side of the figure), as compared to the column-wise 325 

slope (on the right side of the figure).  326 

[Insert Figure 1 about here] 327 

[Insert Figure 2 about here] 328 

[Insert Figure 3 about here] 329 

 330 

Computational details and posterior inference 331 

The values of the hypervariances 2

Aδ , 2

bδ  and 2

eδ  were calculated using a single trait 332 

Gibbs sampler from the same data set. The degrees of belief were set to 10 (i.e. nA = νk = 333 

10) to reflect a relatively high degree of uncertainty. The deviance information criterion 334 

(DIC) was computed for each model using the output from the Gibbs sampling. At the end 335 

of each iteration, heritability of DBH was calculated as ( )2 2 2 2

DBH A A eh = +ɶ ɶ ɶσ σ σ  where 2

A
ɶσ and 336 

2

e
ɶσ are the values of the additive and error variance sampled at a given iteration.  337 
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A single Gibbs chain of 1 010 000 iterations was sampled, and the first 10 000 338 

iterates were discarded due to burn-in. Autocorrelations were calculated with “Bayesian 339 

Output Análisis” (BOA version 1.0.1, Smith 2003) for all lags from 1 to 50. ). To evaluate 340 

the impact of autocorrelations in the variability of the samples, the ‘effective sample size’ 341 

(ESS) proposed by R. Neal (Kass et al. 1998) was calculated for each parameter as: 342 

( )
50

1

1000 000
ESS

1 2
i

iρ
=

=
+ ∑

 343 

where ( )iρ is the autocorrelation measured at lag i. Marginal posterior densities for all 344 

parameters were estimated by the Gaussian kernel method (Silverman 1986; chapter 2): 345 

( )
21000000

1

1 1 1
exp

1000 000 22

i

i

z
f

h h=

 − θ θ = −  π    
∑    [21] 346 

In (16), f ( )θ  is the estimated posterior density, θ i (i =1,..., 1 000 000) is a sampled value 347 

and h is the window width estimated by unbiased cross-validation. Mean, mode, median, 348 

standard deviation (SD), and 95% high posterior density interval (95% HPD), were then 349 

calculated with BOA for all parameters from the individual marginal posteriors using the 350 

free-software R (http://www.r-project.org/). 351 

 352 

Results 353 

The values of DIC for models 1 to 4 were 3152.66, 2868.64, 2833.46, and 2835.12, 354 

respectively. Note that all models that included a tensor product of B-splines had a smaller 355 

DIC (i.e. better fits) than model 1 with block effects. Model 3 (12 × 12 knots) showed the 356 

smallest DIC, closely followed by model 4 (18 × 18 knots). The presence of spatial effects 357 
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could be observed in Figure 4, which displays the estimates of the block effects for model 358 

1, or the estimated surface for models 2 to 4. There seems to be similarities in the locations 359 

of the ‘hills’ and ‘valleys’ in all four graphs. The fit for model 1 is expectedly abrupt as 360 

block effects are parameters for a categorical variable. On the other hand, the estimated 361 

surfaces with models 2 to 4 show that the degree of smoothness increases with the increase 362 

in the number of knots from 8 to 18. 363 

[Insert Figure 4 about here] 364 

Posterior statistics for 2

Aσ , 2

bσ , 2

eσ and h
2
DBH are shown in Table 1. Posterior means, 365 

medians and modes of the variance components and h
2
DBH were similar except for 2

Aσ from 366 

models 2 and 3 and 2

eσ from model 1, where the modes were smaller than means and 367 

medians.  Estimates of 2

Aσ and 2

eσ  were similar in models 2 to 4, and this resulted in similar 368 

posteriors means of h
2
DBH: 0.237, 0.261, and 0.256 for the models with 8, 12 and 18 knots, 369 

respectively. Conversely, the estimated posterior mean of h
2
DBH from the model with blocks 370 

was sensibly smaller (0.08). Also, the estimate of 2

bσ  from model 2 (17.35) was smaller 371 

than the estimated values from models 3 (22.31) and 4 (21.76). The estimates of 2

eσ  from 372 

models 2 to 4 were about half the magnitude of the parameter estimate for model 1. This is 373 

due to the spatial variation not being completely accounted for by the blocking procedure in 374 

model 1. None of the 95% HPD for 2

Aσ , 2

bσ , 2

eσ  and h
2
DBH included 0, suggesting that no 375 

parameter is equal to zero. The standard errors indicate that all estimates were quite precise, 376 

though large numbers of samples were drawn to attain reasonable ESS (last column in 377 

Table 1). 378 

[Insert Table 1 about here] 379 
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The average accuracy of prediction of breeding values, calculated from model 3 (the 380 

one with the smallest DIC) was higher for parents (0.61) and progeny (0.54), than 381 

corresponding values (0.40 and 0.32) calculated from model 1. Thus, fitting a surface using 382 

B-splines resulted in a gain in accuracy of 66 % for parents and 60% for offspring, a result 383 

which is due to the larger value of h
2
DBH estimated in the model with B-splines. The 384 

Spearman correlation between predicted breeding values from models 1 and 3 was equal to 385 

0.97 for parents and 0.94 for offspring, indicating that some re-ranking took place between 386 

the individuals with the least information, i.e. the progenies.  387 

 388 

Discussion 389 

Unaccounted spatial variability in forest genetic trials leads to bias in estimating 390 

genetic parameters and predicting breeding values (Magnussen 1993, 1994), so that 391 

accuracy of selection decreases, thus reducing genetic gain. In the current research, we 392 

showed how to fit a two-dimensional surface using the tensor product of B-splines bases by 393 

means of a mixed model, in the spirit of Eilers and Marx (1996, 2003). P-splines in two 394 

dimensions have also been obtained by a Bayesian approach, as shown by Lang and 395 

Brezger (2004). These authors regarded the difference matrices [3] as a first or a second 396 

order random walk, respectively. Our approach is different from theirs in the replacing of 397 

the singular matrix of the differences [3] by a proper variance-covariance matrix of the 398 

random coefficients for the knot effects in two dimensions. In doing so, we extend the 399 

tensor product of B-spline bases to an individual tree mixed model to account for 400 

continuous spatial variability. Thus, the model incorporates a surface that is smoothed in 401 

the direction of both columns and rows. Gilmour at al. (1997) modeled the large scale 402 
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variation in one dimension of agricultural trials by fitting either polynomials or a cubic 403 

smoothing spline. However, in forest genetic trials where trees are planted in squares or 404 

rectangles, a large portion of the continuous spatial variation is usually present in the two 405 

dimensions. Moreover, it is extremely rare that continuous spatial variability is found only 406 

in the direction of the rows or of the columns, and some sort of interaction between rows 407 

and columns has to be considered in order to account for such variability (Federer, 1998).  408 

Although there exist several statistical methods of smoothing to capture non linearity of the 409 

variation in one dimension, methods in two dimensions are less abundant. For such a 410 

purpose, Federer (1998) proposed fitting interactions between polynomials for rows and 411 

columns. However, polynomials do a poor job when fitting observations in the extremes. 412 

Moreover, small changes in the data produce a dramatic effect in the estimated values of 413 

the coefficients, and this is specially so for polynomials of higher degree. Additionally, the 414 

degree of the polynomial should be selected, which in turn introduces the issue of model 415 

selection. Instead, we propose estimating a smoothed surface using penalized splines. The 416 

approach is flexible as B-spline functions are locally sensitive to the data and are 417 

numerically well conditioned. The variance 2

bσ was used to smooth the effects of both rows 418 

and columns. In the approach of Eilers and Marx (2003) and Lang and Brezger (2004), 419 

different variances for rows and columns were used. Lang and Brezger (2004) went further 420 

and used a locally adaptive estimator of the dispersion parameters. In future research, we 421 

may consider smoothing rows and columns with different dispersion parameters, although 422 

it is not clear to us that this approach may be more advantageous than ours regarding the 423 

quality of the fit, i.e. the value of the DIC. 424 
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The P-splines methodology of Eilers and Marx (1996, 2003) consists of using cubic 425 

B-splines with equally spaced knots. In this approach, the crucial parameter is the penalty 426 

or smoothing factor λ (see [2] and [5]), and the number of knots in the spline is not vital to 427 

the fit as long as there are “sufficiently” many (Eilers and Marx, 1996; Cantet et al. 2005). 428 

In the mixed model approach to P-splines, λ is the ratio 2

eσ /
2

bσ  (Cantet et al. 2005) in [8]. 429 

Looking at Table 1 one may infer that the magnitude of 2

bσ  (the denominator of λ) was 430 

sensitive to the number of knots, as compared to the other variance components. It is 431 

known that the fit of very few knots produces bias, which rapidly decreases as the number 432 

of knots increases (Ruppert 2002). Cantet et al. (2005) found almost equal values of the 433 

modified Akaike Information criterion for models with 20, 40, 60, 80, or 120 equally 434 

spaced knots. However, Restricted Maximum Likelihood estimators for the variance 435 

components did not converge for certain models with 120 knots. For those situations with 436 

120 knots where convergence was attained, there were some inconsistencies in the fit for 437 

intervals where no data was recorded. In the current research, increasing the number of 438 

knots from 8 to 18 produced a smoother surface (Figure 4). Although the model with 12 × 439 

12 knots displayed the smallest DIC, the difference in DIC between the models with 12 × 440 

12 and 18 × 18 knots was minor. This was also true for the estimates of h
2
DBH obtained 441 

from both models: a difference in the third decimal place. In the mixed model approach to 442 

P-splines, the covariance structure of the knot coefficients replaces any of the singular 443 

matrices of differences [3]. In the current research, the tridiagonal matrix proposed by 444 

Durban et al. (2001) is used to model the correlations between the knots for columns and 445 

for rows. The formulation is simpler than the dense correlation structures used by Hyndman 446 

et al. (2005) and Cantet et al. (2005), where there is complete dependence among all knot 447 



 23

effects. In order to check the impact of the covariance matrix on the fit, we adjusted three 448 

models with 12 × 12 knots differing only in the covariance matrix of knot effects, and run 449 

30 000 Gibbs samples. The values of DIC obtained were 2882.33, 2871.58, and 2850.97, 450 

for the structures used by Cantet et al. (2005), Hyndman et al. (2005), and Durban et al 451 

(2001), respectively, which supports the use of the latter structure for the current  data set.    452 

There are several examples of the use of B-spline functions in one dimension when 453 

analyzing breeding data. Thus, animal breeders used splines to model functional breeding 454 

values (White et al. 1999; Bohmanova et al. 2005) or the effects of management unit and 455 

time (Cantet et al. 2005). In forest genetic breeding, Cornillon et al. (2003) used B-splines 456 

to model time functional breeding values of clones in Eucalyptus using a fixed effects 457 

model. Magnussen and Yanchuk (1994) fitted spline functions to observed data so as to 458 

estimate the individual heights at non-recorded times from Douglas-fir trees. The resulting 459 

data was then used to predict breeding values at non-recorded ages and genetic dispersion 460 

parameters. The fit of a smoothed surface to the progeny trial in E. globulus with tensor 461 

product of B-splines instead of the ‘a priori’ block design, consistently increased the 462 

posterior means of 2

Aσ and of h
2
DBH (Table 2). The results agree with those of Zas (2006) 463 

that accounted for spatial variability using Kriging, and are different from those of 464 

Dutkowsky et al. (2002). In the latter case, inconsistent estimates of 2

Aσ were obtained after 465 

adjusting an AR(1) × AR(1) covariance structure to the residuals of the model. In our data, 466 

the spatial models produced an increase in precision for the estimation of 2

eσ , which can be 467 

noticed by the much lower standard deviations and the narrower values for the 95% high 468 

posterior probability density intervals, when compared to the estimate from the model with 469 

blocks (Table 1). Moreover, accuracy of breeding values from parents and offspring 470 
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calculated with the spatial models were higher than corresponding values estimated from 471 

the model with block effects. This result agrees with those of Costa e Silva et al. (2001) for 472 

tree height and Zas (2006) for tree diameter. Our results suggest that analysis of data 473 

displaying large scale continuous spatial variation, such as the one induced by a petrocalcic 474 

layer at variable depth, could hardly be accounted for by blocking techniques.   475 

In the current research, we modeled spatial variability that is continuous and 476 

permanent along a site, using an individual tree mixed model with a smoothed surface. In 477 

forest genetic evaluation, the spatial variation at the microsite level has been modeled with 478 

nearest neighbor techniques (Magnussen 1990; Costa e Silva et al. 2001; Dutkowski et al. 479 

2002, 2006) or with Kriging (Hamann et al. 2002; Zas 2006). Nevertheless, interplant 480 

competition may be another source for small scale spatial variation which affects the 481 

correlation between neighbors (Magnussen 1994). The mixed model [6] does not account 482 

for genetic competition among trees, and this can bias the estimation of 2

Aσ (Cappa and 483 

Cantet 2006b). However, the trees used in the analysis were 6 yr-old, so that competition 484 

was weak or absent. For those situations where trees are measured at an age where 485 

competition effects are sizeable, it would be desirable to fit simultaneously continuous 486 

spatial variation and genetic effects of competition.  487 
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Figure 1: Spatial patterns of the residuals of tree DBH. The colors of the dots represent the 615 

magnitude of the residuals: the blacker the dot, the bigger the residual. 616 

 617 
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Figure 2: Plot of the residuals after fitting provenance and additive genetic effects: a) 618 

number of column for different rows and b) number of rows for different columns. 619 

 620 
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Figure 3: Sample variogram showing the interaction between rows and columns.  621 

 622 
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Figure 4: Plot of the estimates of block effects (Model 1) and the surfaces from the fitting 623 

of tensor product B-splines with either 8 (Model 2), 12 (Model 3), or 18 (Model 4) knots. 624 

Model 1 Model 2 

  

Model 3 Model 4 

  
 625 
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Table 1: Posterior statistics for the additive genetic variance ( 2

Aσ ), the variance of the B-626 

spline coefficients ( 2

bσ ), the error variance ( 2

eσ ), and the heritability of DBH (h
2
DBH).  627 

Model
a
 Parm.

b
 Mean Median Mode SD

c
 95% HPD

d
 ESS

e 

1 
2

Aσ  1.835 1.801 1.609 0.37149 1.291 – 2.503 24119 

 2

eσ  23.043 20.144 14.070 8.69251 15.182 – 40.520 87274 

 h
2
DBH 0.080 0.079 0.084 0.02520 0.040 – 0.123 43572 

2 
2

Aσ  3.596 3.480 2.642 0.98973 2.191 - 5.381 16181 

 2

bσ  17.351 16.558 16.875 5.17173 10.457 - 26.887 169158 

 2

eσ  11.156 11.191 10.476 1.01469 9.432 - 12.760 24207 

 h
2
DBH 0.243 0.237 0.259 0.06401 0.151 - 0.358 16254 

3 
2

Aσ  3.754 3.643 2.933 1.00390 2.310 – 5.573 16474 

 2

bσ  22.317 21.649 23.716 5.47972 14.682 – 32.132 109973 

 2

eσ  10.275 10.301 9.900 1.01309 8.558 - 11.871 23568 

 h
2
DBH 0.267 0.261 0.244 0.06872 0.167 - 0.389 16519 

4 
2

Aσ  3.661 3.558 3.439 0.98475 2.254 - 5.458 16526 

 2

bσ  21.758 21.409 18.998 4.17318 15.463 - 29.223 81522 

 2

eσ  10.312 10.339 9.683 1.00670 8.595 - 11.920 24305 

 h
2
DBH 0.262 0.256 0.205 0.06706 0.164 - 0.383 16588 

Note: 628 
a
 Model 1: blocks fitted as fixed effects.  629 

  Model 2: P-splines with 8 knots for rows and 8 knots for columns. 630 

  Model 3: P-splines with 12 knots for rows and 12 knots for columns. 631 

  Model 4: P-splines with 18 knots for rows and 18 knots for columns.
  

632 
b
 Parm. = Parameter. 633 
c
 SD = standard deviation. 634 
d 
HPD = high posterior density interval. 635 

e 
ESS = effective sample size. 636 


