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Abstract 
Evidence is presented for ‘generalized autoregressive conditional heteroskedasticity’ processes (GARCH(1,1)), 
in the residuals of beef cattle growth traits. This process can account for differences in variance at different time 
points, with the advantage of using a parsimonious parametrization. Data used were 10271 birth weights (BW), 
19992 weaning weights (WW) and 9717 weight at 18 months (FW), from five herds registered in the national 
evaluation of the Brangus breed in Argentina. The residuals calculated from the 2005 genetic evaluation were 
regressed on Julian dates by least squares. From a second set of residuals out of the linear regression model, 
Maximum Likelihood estimation via the Fisher scoring algorithm was used to estimate the GARCH(1,1) 
parameters. Eight out of fifteen one-sided Lagrange multiplier statistics significantly (P < 0.05) rejected the 
hypothesis of null GARCH(1,1) parameters in the genetic evaluation residuals. Incorporating these effects in 
genetic evaluation is feasible due to the diagonal covariance matrix induced by the process on each trait, which 
simplifies building the mixed model equations. 
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Zusammenfassung  
Titel der Arbeit: Beleg für autoregressiv bedingte Streuungsungleichheit bei Wachstumsmerkmalen von 
Fleischrindern 
Es werden Beweise für autoregressiv bedingte Streuungsungleichheit (GARCH (1,1)) in den Residuen bei 
Wachstumsmerkmalen von Fleischrindern vorgestellt. Dieser Prozess kann für eine Vereinfachung bei der 
Bestimmung einer zeitabhängigen Variation der Varianzen genutzt werden. 
Der Datensatz enthält 10271 Geburtsgewichte, 19992 Absetzgewichte und 9717 Gewichte der Tiere am 18. 
Lebensmonat, welche in fünf Herden, die in der Nationalen Erfassungsstelle der Brangus Rasse Argentiniens 
erfasst sind, erhoben wurden. Die Residuals wurden 2005 nach genetischer Herkunft erfasst und nach ihren 
Kalenderdaten mit der Methode der kleinsten Quadrate berechnet. Aus einer zweiten Residualgesamtheit des 
linearen Regressionsmodells wurden mittels der Maximum-Likelihood-Schätzung über den Fisher Scoring 
Algorithmus, die Parameter des GARCH (1,1) Modells geschätzt. Acht der fünfzehn einseitigen Lagrangischen 
Multiplikationstests lehnten signifikant (P <0,05) die Hypothese von Null-GARCH (1,1) Parametern in den 
Residuen der genetischen Auswertung ab. Diese Effekte können durch die diagonale Kovarianz-Matrix, die 
durch diesen Prozess in jedem Wachstumsmerkmal induziert wird, in die genetische Auswertung einbezogen 
werden. Dadurch kann die Erstellung gemischter Modelle vereinfacht werden. 
 
Schlüsselwörter: ARCH, GARCH, Varianzheterogenität, Wachstumsmerkmale, Fleischrind  
 
 

Introduction 
The presence of heterogeneous error variances in field data used for genetic evaluation 
has been extensively documented in different species and different traits. Fail to 
account for heterogeneous variance in models of genetic evaluation reduces intensity 
and accuracy of selection (HILL, 1984). The reason is that animals displaying higher 
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performances in highly variable herds tend to be selected over individuals that are high 
performers in herds with low variability (HILL, 1984; VAN VLECK, 1987). As a 
consequence, genetic progress will be reduced. On the other hand, if estimates of the 
heterogeneous variances are available, the mixed model equations for Best Linear 
Unbiased Prediction (HENDERSON, 1984) can be modified to account for 
heteroskedasticity into the model (GIANOLA, 1986). However, several covariance 
structures that account for heterogeneity of variances and covariances are either not 
amenable to computation (i.e. non-diagonal R covariance matrices of error effects), or 
are difficult to estimate due to the high number of parameters involved. J. L. Foulley 
and coworkers (FOULLEY et al, 1990, 1992; SAN CRISTOBAL et al., 1993) have 
developed models to detect causes of heteroskedasticity based on taking natural logs of 
residual variances and setting a linear model for the transformed dispersion 
parameters.  
There may be instances in which the existing heterogeneity is time-dependent, and can 
not be ascribed to a single cause, such as contemporary group, age of dam, sex, etc. In 
these cases, a stochastic process may be envisaged at the herd level that makes the 
variance of observations from animals that are born and raised one or more days apart, 
as related to each other. The process is such that its unconditional variance does not 
display the heterogeneity, but the variance conditional on one or more previous errors 
does. Within the econometrics literature, ENGLE (1982) has described such a process, 
and called it ‘autoregressive conditional heteroskedasticty’. The literature is abundant 
in related processes such as GARCH, IGARCH, ARCH-M, to quote some. ARCH-
GARCH processes can take into account periods of low variance and periods where 
the variability observed is high. The objective of this research is to display evidence 
for the presence of GARCH processes in growth traits of beef cattle at the herd level.  
 
 

Material and Methods 
Data 
Growth data used in the study consisted of 10271 birth weights (BW), 19992 weaning 
weights (WW) and 9717 weights at approximately 18 months of age (FW), of bulls 
and heifers registered in the animal genetic evaluation program (ERBra) of the 
Argentine Brangus Association. Out of the 56 herds that participated of ERBra 2005, 
five were chosen for the analysis. The criteria used in selecting the herds were 1) 
number of years of recording, 2) completeness of the data, and 3) regional 
representativity. The day in which the first recorded animal was born was arbitrarily 
set to day 1 for each herd, and the day of birth (t) of any animal born later was scored 
in Julian days.  
Residuals for BW, WW and FW, were calculated from the multiple trait animal model 
evaluation used in the ERBra. Fixed effects included contemporary groups for all 
traits, sex of calf and age of dam for BW and WW, and age of weaning for WW and 
age at the day of measure for FW. In the ERBra, the parametrization of HILL (1982) is 
used to correct for heterosis in WW using mean dominance and mean additive 
maternal effects, whereas dominance is included in the model for FW. Random direct 
breeding values were included for the three traits, whereas WW also included maternal 
breeding values. Estimates of all fixed effects plus predicted breeding values from the 
2005 evaluation were employed to obtain the estimated residuals. 
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Estimation and hypothesis testing 
The characteristics and properties of ARCH and GARCH processes are described in 
Appendix A. The parameters of the GARCH(1,1) processes were estimated by 
maximum likelihood using the Fisher scoring algorithm. The estimating equations for 
the ARCH(1) process are described in Appendix B, whereas the derivatives needed for 
the GARCH(1,1) process are obtained in Appendix C. 
In order to test for the presence of a GARCH (1,1) processes in the data, we used the 
Likelihood Multiplier (LM) statistics originally described by ENGLE (1982) to test for 
an ARCH(1) process. LEE (1991) showed that the LM test for an ARCH(1) is 
numerically identical to the LM test for the GARCH(1,1). Therefore, we used the LM 
statistics to test directly for the GARCH(1,1), where the null hypothesis is "1 = 0 and 
$1 = 0. A further refinement consisted in using the more powerful one-sided version of 
the LM test discussed by DEMOS and SENTANA (1998), which will be explained 
below.  
In the context of beef cattle growth traits, the LM procedure consists on fitting a linear 
regression model on the residuals from the genetic evaluation on julian dates, and then 
test for the presence of a GARCH process in the residuals from this regression. A 
problem with animal breeding data is that calvings occur irregularly through time, so 
that in any given date there may be several animals being born. As standard 
econometric techniques are based on fixed time interval analysis, ENGLE and 
RUSELL (1998) expanded ARCH-GARCH processes to account for variable time 
interval analysis into autoregressive conditional duration (ACD) models. However, 
ENGLE (2002) observed that standard ARCH-GARCH techniques can be used after 
transforming the ACD irregularly spaced random variable xt (in our case Day of Birth, 
DOB, in Julian days) to tx , and then setting the mean to zero. Let e (ij)t be the residual 
of trait j from animal i with transformed DOB (denoted as t). The residual e(ij)t was 
regressed on the transformed DOB of individual i (ti) such that: 

( ) ( )iij t ij te t0 1= δ + δ + ε      (8) 

where *0 is the intercept and *1 is the slope of the residuals through time, and ( )ij tε is 

the error term. It is expected that the ‘regression residuals’ from the genetic evaluation 
do not deviate from a zero expectation, i.e. *0 = 0 and *1 = 0. Moreover, if there is no 
evidence for an ARCH or GARCH process, then the term ( )ij tε is just ‘white noise’: 

normal independent random variables with zero mean and constant variance. 
Regression residuals were obtained with least squares estimates of the parameters in 
(8) as follows  

( ) ( )
ˆ ˆˆ iij t ij te t0 1ε − δ − δ=      (9) 

The LM test for a GARCH(1,1) process was implemented for each of the three traits 
and each of the five herds. The null hypothesis was H0: α1 = 0 and $1 = 0, and the test 
statistics is equal to 

( ) 1

0 0

0 0

2' ''
'

T 
T R

−

=
f F F F F f

f f
    (10) 
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where F = [F1:..: FT], ( )
2ˆ ij ti −11, ε⎡ ⎤= ⎣ ⎦F ; f0 is the column vector of ( )

2

2
0

ˆ
1ij t

t

ε

σ

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
 under the 

null hypothesis, and 
( )
2

12
0

ˆ
T

ij ti
t T

=
ε∑

σ = . The R2 is the squared multiple correlation between 

f0 and F. Under the null hypothesis of the one-sided test proposed by DEMOS and 
SENTANA (1998), the test statistics is asymptotically distributed as a 50:50 mixture 
of c2

(0) and c2
(1), which was the distribution used to calculate the p-values.  

 
 

Results 
Tables 1, 2, 3 display the LM tests for the hypothesis of the GARCH(1,1) process (H0: 

1α  = 0 and ß1 = 0) on the errors of BW, WW, and FW, respectively.  
 
Table 1 
Results of the Lagrange multiplier tests for birth weight (Lagrangischer multipler Test für Geburtsgewichte) 

Herd Number of 
records 

Number of 
Julian days 

2σ  
LM statistics p-value Kurtosis 

A 361 274 0.035 0.00 0.469 225.26 
B 7,760 8,736 0.052 2.70 0.050 5.37 
C 739 1,011 0.134 3.36 0.033 3.06 
D 634 2,717 0.068 0.15 0.349 3.32 
E 777 857 0.136 11.38 < 0.001 3.00 

 
Table 2 
Results of the Lagrange multiplier tests for weaning weight (Lagrangischer multipler Test für Absetzgewichte) 

Herd Number of 
records 

Number of 
Julian days 

2σ  
LM statistics p-value Kurtosis 

A 5,703 11,061 1.189 187.64 < 0.001 4.05 
B 11,350 9,036 1.018 3.27 0.035 2.49 
C 758 1,011 1.977 0.01 0.454 2.22 
D 1,275 2,793 1.735 15.31 < 0.001 2.01 
E 836 857 1.968 0.11 0.371 1.92 

 
Table 3 
Results of the Lagrange multiplier tests for 18-months weight (Lagrangischer multipler Test für das 18 Monate-
Gewicht) 

Herd Number of 
records 

Number of 
Julian days 

2σ  
LM statistics p-value Kurtosis 

A 2,932 11,058 2.890 1.49 0.111 1.92 
B 5,976 8,735 2.379 49.57 < 0.001 4.72 
C 256 853 2.249 13.18 < 0.001 0.63 
D 348 2,717 4.560 0.34 0.280 0.65 
E 205 143 4.525 0.63 0.213 2.13 

 
There were significant (P < 0.05) evidences that 1α > 0 and ß1 > 0 for all three traits in 
herd B, and at least one trait showed a value of 1α and ß1 significantly (P < 0.05) 
greater than 0 in the other herds: WW for herd A, BW and FW for herd C, WW for 
herd D, and BW for herd E. Length of data collection (number of Julian dates) was not 
related to the result of the tests. Most values of the kurtosis for the unconditional 
distribution of error terms were greater than 3 whenever the LM test was significant, 
as expected by theory. The Figure depicts the distribution of errors for WW with time 
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in herd A. Observe that the period from 1 to 2000 days displays larger changes in 
variance than the interval between 2000 and 5000 days, although the mean does not 
deviate from 0 throughout the 30 years of data collection. Notice the typical GARCH 
effect by which large (small) absolute values are followed by large (small) values of 
unpredictable sign. 
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Figure: Distribution of errors for weaning weight with time for herd A. (Fehlerverteilung für die Absetzgewichte 
abhängig von den Tagen der Herde A) 
 
Estimates of the parameters are showed in Tables 4, 5 and 6. Across all herds and traits 
that displayed significant LM statistics in favor of a GARCH(1,1) process, parameter 
estimates ranged from 0.009 to 0.182 for α1, and 0.079 to 0.988 for β1.  
 
Table 4 
Estimates of the GARCH(1,1) parameters for birth weight (Schätzung der GARCH (1,1) Parameter für 
Geburtsgewichte) 

ω α1 β1 Herd 
Estimate S.E. Estimate S.E. Estimate S.E. 

A 0.0351 0.00051 0.0000 <0.00001 0.0028 0.00001 
B 0.0001 0.00003 0.0087 0.00075 0.9882 0.00118 
C 0.1002 0.01750 0.1719 0.04690 0.0788 0.13920 
D 0.0501 0.03100 0.0875 0.03830 0.1814 0.44760 
E 0.0016 0.00080 0.0618 0.01150 0.9273 0.01090 
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Table 5 
Estimates of the GARCH(1,1) parameters for weaning weight (Schätzung der GARCH (1,1) Parameter für 
Absetzgewichte) 

ω α1 β1 Herd 
Estimate S.E. Estimate S.E. Estimate S.E. 

A 0.0172 0.00211 0.0975 0.005694 0.8948 0.00523 
B 0.0375 0.00740 0.0133 0.001824 0.9498 0.00840 
C 1.9562 0.09810 0.0106 0.0318 0.0000 0.00000 
D 0.2002 0.05440 0.1818 0.0265 0.7088 0.04550 
E 1.9682 0.07180 0.0000 < 10-10 0.0000 0.00000 

 
Table 6 
Estimates of the GARCH(1,1) parameters for 18-month weight (Schätzung der GARCH (1,1) Parameter für 18 
Monate-Gewichte)  

ω α1 β1 Herd 
Estimate S.E. Estimate S.E. Estimate S.E. 

A 0.4795 0.21140 0.0399 0.0137 0.7945 0.0832 
B 0.0245 0.00361 0.0187 0.0015 0.9709 0.0025 
C 0.5855 0.49490 0.1004 0.0566 0.6383 0.2465 
D 4.4625 0.32980 0.0213 0.0423 0.0000 < 10-10 
E 4.5255 0.01600 0.0000 < 10-10 0.0000 0.0726 

 
 

Discussion 
In the current research, we found evidence that the environmental variances of growth 
traits in beef cattle can be modeled with GARCH(1,1) processes.  Heteroskedasticity 
in growth traits have also been reported by ROBERT-GRANIE et al (2002); 
RODRIGUEZ-ALMEIDA et al (1995) and SAN CRISTOBAL et al (1993). HILL 
(1984) observed that animals from the more variable environments tend to be selected 
if heterogeneous environmental variances are not accounted for. He further indicated 
that heterogeneity of variances induces nonlinearity between true and predicted 
breeding value, a fact observed on simulated data by MEUWISSEN and VAN DER 
WERF (1993). Thus, accuracy of prediction of breeding value will decrease due to 
unaccounted variance heterogeneity.  
There are two major advantages to the use of ARCH-GARCH processes for modeling 
heteroskedasticity. First, the parameters for the ARCH-GARCH process describe 
variance heterogeneity at the individual animal level, rather than to using groups of 
animals to model heteroskedasticity (say, by herd, by year, or by contemporary 
groups), being therefore more sensitive to differences in environmental variance. 
Second, the number of parameters introduced (2 per herd for ARCH(1) and 3 per herd 
for GARCH(1,1)) will generally be smaller than using one variance component per 
contemporary group. As an example, in the Argentinian Brangus evaluation the 
amount of information for a single parameter in the GARCH(1,1) process, is 
respectively, 3.3, 13.2 o 9.7 times greater for BW, WW and FW, as compared to using 
one variance parameter per contemporary group. We will deal with estimating the 
dispersion parameters in multiple-trait animal models elsewhere. 
If estimates are available of the ARCH or GARCH parameters, the processes can be 
incorporated into an animal model of genetic evaluation. Let R be the s × s 
environmental covariance matrix among s traits. Then, R can be decomposed as R = S 
C S, where S is a diagonal matrix with non-zero diagonal entries equal to the 
environmental standard deviations of the s traits 1σ , …, sσ , whereas C is a a 
correlation matrix with diagonal elements equal to 1 and off-diagonals equal to rij, the 
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environmental correlation between traits i and j. To account for an ARCH-GARCH 
process, let Rhit be the covariance matrix of environmental effects for animal i within 
herd h, born at time t. Now, Riht = Siht C Siht, with the diagonals of Siht equal to σijht: the 
square root of the variance in (3) for the ARCH or in (7) for the GARCH, scaled to the 
regular order of magnitud of Rii.  
To build up the mixed model equations (MME) for a multi trait animal model, order 
the data by date of birth within the herd. Then, from previous solutions or a previous 
run, obtain the residuals for each animal within her and trait, and write them into the 
input data file. Next, calculate the variances σ2

ijht while reading the data and the ijht-
error term. Finally, read the data and the σ2

ijht’s for each animal, create and invert (or 
obtain a g-inverse) of Rijht and form the MME as usual. 
In conclusion, heteroskedasticity of growth taits in some beef herds can be modeled by 
GARCH(1,1) processes. Incorporating these effects in genetic evaluation is feasible 
due to the diagonal covariance matrix induced by the process on each trait, which 
simplifies building the MME.  
 
 

Appendix A. The ARCH and GARCH processes 
The ARCH (q) process 
Consider the set of random variables indexed by time TT = {e1,.., et-1, et,.., eT}, and 
write 

2
t t te = σ,       (A1) 

where 0t are standard i.i.d. normal (0,1) variables, and 2
tσ is the variance of the process 

at time t. The unconditional expectation of (1) is  

( ) ( ) 2 2E E 0 0t t t te = == σ σ,     (A2) 
If we condition on the set Tt-q, the conditional expected value is 

( ) ( ) ( )2 2E E E 0t t q t t q t t te ⏐ ⏐− − == σ σ =, ,T T  
As put forward by ENGLE (1982), the variance in (1) is modeled conditional on Tt-q  

( ) ( ) 2 2 2 2 2
1 1 2 2Var Var ...t t q t t t t t q t qe e e e− − − −⏐ = σ = σ = + α + α + + αω,T   (A3) 

with the conditions ω > 0 and 0 # αi # 1, i = 1, 2, ..., q. This equation for the variance 
allows capturing the dynamics of the conditional heteroskedasticity, as the conditional 
variance is dependent upon the realized values of et-q,..., et-1 squared. In turn, this 
conveys the idea of the process having ‘memory’ on the past 1, 2.., q realizations. A 
further requirement is needed for the variance to be stationary, so that it does not 
depend on the particular time t (BOLLERSLEV et al, 1993, page 2967): 

( )1 2 1... q <α + α + + α  
Notice that the unconditional variance of (1) is constant though, and can be obtained as 
follows 

( ) ( ) ( )( ) ( )

( ) ( )

2 2 2

2 2
1 1 1

Var E E E E

E E ...

t t t t q t

t q t q q

e e e

e e

2
−

2 2
− −

σ = = = ⏐ = σ

=ω + α + ... + α = ω+ α σ + + α σ

T

 

So that 
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( )
( )

1 1

1

1 ...

Var
1 ...

... q q

t
q

e

2 2 2 2

2

⇒σ = ω α σ α σ σ − α − − α = ω
ω

σ = =
− α − − α

+ + +

⇒  

Also, the ARCH(q) variables are uncorrelated at different times: 

( ) ( ) ( )( )
( )( ) ( )( )

Cov , E E E

E E E 0 0
t t q t t q t t q t q

t q t t q t q

e e e e e e  
e e e 

− − − −

− − −

= = ⏐ =

⏐ = =

T

T
  (A4) 

Although the e’s are serially uncorrelated, they are not independent through time. In 
words of BOLLERSLEV et al (1993) “there is a tendency for large (small) absolute 
values of the process to be followed by other large (small) values of unpredictable 
sign”. After (A2), (A3) and (A4), the conditional distribution of the ARCH(q) random 
variable in (1) is equal to 

( ) ( )
2

2
22

0, exp 2
t

t  t q t t  t q
tt

e
e N p e− −

1
⏐ ∼ σ ⏐ = − σ2 π σ

⎡ ⎤
⎢ ⎥⎣ ⎦

T T .  (A5) 

Note that in ARCH(q) processes the conditional probability of e1,., eq-1 is unknown, as 
Tq-1 is undefined. Although the conditional distribution of et is time-invariant, the 
unconditional distribution for et will tend to have ‘fatter tails’ than the normal density 
of ,t. For example, BOLLERSLEV et al (1993) observed that the kurtosis of an 
ARCH(1) process with conditionally normally distributed errors is equal to: 

( ) ( )
( )

2
1

2
1

4

22

1
3

1 3

E
Kurtosis 3

E

t
t

t

e
e

e

− α
≥

− α
= =
⎡ ⎤⎣ ⎦

   (A6) 

 Therefore, the ARCH(1) process is leptokurtic: the curvature is high in the center of 
the density and the tails are ‘fatter’ than those of the normal distribution. 
 
The GARCH (p, q) process 
BOLLERSLEV (1986) generalized ARCH(q) processes by allowing the conditional 
variance to be also a function on the p previous variances 2

t p−σ , 2
1t p+−σ ,…, 2

1t−σ , 
besides the q previous realizations of et-q,…, et-1. Thus, the variance in the GARCH(p, 
q) process is 

2 2 2

1 1

q p

t i t i i t i
i i

e − −
= =

σ = ω+ α + β σ∑ ∑     (A7)  

The requirement for the variance to be stationary (HAMILTON, 1994, page 666) is as 
follows 

1 1

1
q p

i i
i i= =

<α + β
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑  

For the GARCH(1,1) process, BOLLERSLEV et al (1993) observed that the 
conditions for positivity of the conditional variance (i.e. 2

tσ > 0) are ω $ 0, α1 $0, and 
$1 $0. 
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Appendix B: Maximum likelihood estimation 
By conditioning on 1ε from the first observation, at the start of the recursive process the 
likelihood does not depend on the parameters (BOLLERSLEV et al, 1993). From (A4) 
and (A5), the log-likelihood function can be written as 

( ) ( ) ( )2 2
2

2

1 1, log 2 log
2 2

T
t

t t t
t t

2

=

⎛ ⎞ε
ε σ = − π − σ +⎜ ⎟σ⎝ ⎠

∑‹    (B1) 

By taking first derivatives of (B1) the scores are: 
2 2

1
2 22 2 2 2

2 21 1

1
1 1

2 2

T T
t t tt t

t tt tt t t t

22 2
−

= =

− −
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ σ εε ε

= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟σ σω σ ω σ α σ α σ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑M MM‹ M‹ M‹ M‹

M M M M M M
(B2) 

Whereas second derivatives are equal to: 

( ) ( )

2 2
1

2 22 24 4
2 21

1
1 12

2 2

T T
tt t

t tt tt t

42 2
−

= =

− −
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞εε ε

= − = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟σ σσ σω α⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑M ‹ M ‹

M M
 

2
1

24
21

12
2

T
t t

tt t

2 2
−

=

−
⎡ ⎤⎛ ⎞ε ε

= −⎢ ⎥⎜ ⎟σω α σ ⎝ ⎠⎣ ⎦
∑M ‹

M M
    (B3) 

The expected values of the second derivatives are needed for the Fisher scoring 
algorithm. Now, observe that after (1) we can write 2 2 2

t t t
−= ε σ, . As the t, are N(0,1), we 

have that ( )2E 1t =, . Consequently, 
2

2E 1t

t

⎛ ⎞ε
=⎜ ⎟σ⎝ ⎠

 and 
2

2E 2 1 1t

t

⎛ ⎞ε
− =⎜ ⎟σ⎝ ⎠

, so that the 

expectations of second derivatives are 
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ENGLE (1982) observed that these expectations are consistently estimated by  
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with 
( )
( )
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22
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ˆ
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t
t

t T

1
=

ω+ α ε∑
σ

−
= . The scalars ω̂  and ˆ 1α are the estimated dispersion 

parameters, and ˆ tε is the residual from the previous iteration of the Fisher scoring 
algorithm. The estimating equations are: 
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   (B6) 

The superindex k indicates the iteration number. Convergence was assumed to be 
attained when the difference between the estimated parameter vector in (B6) from two 
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successive iterations was lower than a preset value (for example, 10-6) for both ω  
and 1α . The equivalent system to (B6) for the GARCH(1,1) is 3 × 3 due to the added 
equation for 1β . 
 
 

Appendix C: Analytic derivatives of the GARCH(1,1) log-likelihood 
By combining expressions (3) and (4) in FIORENTINI et al (1996), the log-likelihood 
can be written as 

( ) ( ) ( )2 2
2

1

1, log 2 log
2 2

T
t

t t t
t t

T 2

=

⎛ ⎞ε
ε σ = − π − σ +⎜ ⎟σ⎝ ⎠

∑‹    (C1) 

To take care of the first observation, Fiorentini et al (1996) employed an estimate of 
the unconditional expectation, so when t ≤ 0 

2
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1 T
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=
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Now, write 2 't tσ = θz , with the parameter vector being equal to 1 1 '⎡ ⎤⎣ ⎦θ = ω α β , and 
2 2
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On taking derivatives in (C1) produces  
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Now, we need an expression for the derivatives of 2
tσ  with respect to the elements of 

θ:  
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1
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Expression (C3) is recursive as the derivative at time t depends on to the derivatives of 
the variance at previous times. Thus, for t = 1, 2, 3, we have that 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

22
01

1

2 2
2 1

1 1

2 2
23 2 2

1 11 1 1 11 1

t i t ii i

t i t i t ii i

t i t i t i t it i t ii i
t i t i

⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎝ ⎠

+

+ + +

=

= + = + +

σ∂ σ
= + β =∂ θ ∂ θ

∂ σ σ
= + β β∂ θ ∂ θ

∂ σ σ
= + β β β β β β β∂ θ ∂ θ

z

z z z z z

z z

z z

z z z

 

The emerging pattern is such that 
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Let ( ) 2 1
1 1 1 11 ... t

th −β = + β + β + + β . Using (C4) we have 
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On replacing with (C5) in (C2), first derivatives of 2
tσ with respect to ‹  are 

respectively equal to 
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In order to obtain the second derivatives, we take derivatives in (C1) to get 
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(C9) 
And, after some algebra second derivatives are equal to: 
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