
converge to a clear limit in long enough
series (6, 7, 17, 18). Toward the other end
of the range of conceivable behavior lies
density-independent stochastic growth, the
prime example of which is a random walk,
for which the variance grows linearly with
time (7, 13). It seems (Fig. 2A) that the
dynamics of animal populations, on the
longest time scales available to us, lie
somewhere between these two poles. These
results show that population variability is
not a single fixed quantity. The incorpora-
tion of some measure of variance increase
into widely used measures of temporal vari-
ability (such as the coefficient of variation
or the standard deviation of the logarithm
of abundance) offers the possibility of sub-
stantially improving the understanding of
ecological variability.

Often, the limiting factor while investi-

gating ecological phenomena and in the
development of theory to explain them has
been the availability of suitable long-term
data. As we have illustrated here, the
GPDD now offers an unprecedented oppor-
tunity to undertake broad-scale compara-
tive studies aimed at understanding the
main features of population dynamics.
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Ecological Forecasts: An Emerging Imperative
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Planning and decision-making can be improved by access to reliable
forecasts of ecosystem state, ecosystem services, and natural capital.
Availability of new data sets, together with progress in computation and
statistics, will increase our ability to forecast ecosystem change. An
agenda that would lead toward a capacity to produce, evaluate, and
communicate forecasts of critical ecosystem services requires a process
that engages scientists and decision-makers. Interdisciplinary linkages are
necessary because of the climate and societal controls on ecosystems, the
feedbacks involving social change, and the decision-making relevance of
forecasts.

Scientists and policy-makers can agree that
success in dealing with environmental change
rests with a capacity to anticipate. Rapid
change in climate and chemical cycles, de-
pletion of the natural resources that support
regional economies, proliferation of exotic
species, spread of disease, and deterioration
of air, waters, and soils pose unprecedented
threats to human civilization. Continued
food, fiber, and freshwater supplies and the
maintenance of human health depend on our
ability to anticipate and prepare for the un-
certain future (1). Anticipating many of the
environmental challenges of coming decades
requires improved scientific understanding.
An evolving science of ecological forecasting
is beginning to emerge and could have an
expanding role in policy and management.

An initiative in ecological forecasting
must define the appropriate role of science in
the decision-making process and the research
that is required to develop the capability.
Ecological forecasting is defined here as the
process of predicting the state of ecosystems,

ecosystem services, and natural capital, with
fully specified uncertainties, and is contin-
gent on explicit scenarios for climate, land
use, human population, technologies, and
economic activity. The spatial extent ranges
from small plots to regions to continents to
the globe. The time horizon can extend up to
50 years. The information content of a fore-
cast is inversely proportional to forecast un-
certainty (2). A wide confidence envelope
indicates low information content. A scenario
assumes changes in “possible future bound-
ary conditions (e.g., emissions scenarios). . . .
For the decision maker, scenarios provide an
indication of possibilities, but not definitive
probabilities” (3). Scenarios can be the basis for
projections, which apply the tools of ecological
forecasting to specific scenarios.

What Is Forecastable?
Accurate estimation and communication of
information content will determine the suc-
cess of an ecological forecasting initiative.
“Forecastable” ecosystem attributes are ones

for which uncertainty can be reduced to the
point where a forecast reports a useful
amount of information. Information content
is affected by all sources of stochasticity.
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Low information content can result because
drivers (and, thus, model structures) are un-
certain, parameters are uncertain, and un-
known human responses to ecosystem change
(or to forecasts of ecosystem change) affect
outcomes. Many sources of stochasticity are
typically ignored in ecological models. When
reported at all, prediction uncertainties are
typically confined to estimation error (4, 5),
which is reduced by sampling and is often
overwhelmed by other sources of uncertainty.

Most daunting is the “inherent” uncertain-
ty that results from strong nonlinearities and
stochasticity. For example, the inherent un-
certainty involved in extinction risks leads
ecologists to disagree on the value of predic-
tions from population viability models (6).
Extinction forecasts are highly sensitive to
poorly constrained assumptions (7). Inherent
uncertainty will always limit informative
forecasts of spread velocity for invasive
plants with high reproductive rates. Even pre-
cise knowledge of parameters that might be
estimated, for example, through detailed
study of long-distance dispersal, would do
little to increase forecast information (8).

Large inherent uncertainty does not nec-
essarily neutralize efforts to anticipate
change. Forecasting will improve as ecolo-
gists identify the “slow” variables that fore-
warn of consequences years in advance.
Whereas deterministic weather forecasts con-
front an approximate 2-week limit, probabi-
listic climate prediction makes use of the
system memory represented by sea-surface
temperatures. The limitations imposed on a
deterministic weather forecast by nonlineari-
ties may not defeat efforts to provide infor-
mative climate forecasts (9). There are many
“slow variables” that constrain ecological
processes (10). For example, successional
change in forests is constrained by climate
and soils. If these change slowly relative to
tree life-spans, succession is predictable us-
ing physiology and competitive interactions
among trees (5, 11). Land-use change is de-
termined by individual decisions that are in-
fluenced by a variety of uncertain needs and
goals. Yet decade-scale land-cover change
can be predictable based on overriding con-
trols imposed by topography and distance to
market centers (12).

Agricultural practices result from com-
plex decisions, but slow variables can be the
basis for useful projections. Projections of
subsidies to global food production (irriga-
tion, fertilizers, and transport and storage of
crops) (13) can inform forecasts of down-
stream eutrophication in coastal fisheries and
increases in atmospheric greenhouse gases
(CH4, CO2, and N2O) (14). Ecologists can
forecast how environmental change affects
carbon storage in agriculture, by production
forestry, and in natural ecosystems. Nitrogen
deposition leads to predictable changes in

plant composition and reduced carbon stor-
age potential in tallgrass prairie soils (15).
Knowledge of fertilizer and irrigation effects
on carbon storage in agroecosystems can be
used to forecast how managed ecosystems
will contribute to or stem the future rise of
CO2 in Earth’s atmosphere (16).

Analysis of projections can help anticipate
change, even where forecasts are uninforma-
tive. Although forecasts of population migra-
tion rates will typically have low information
content, analysis shows that productive re-
search will focus on factors affecting inva-
sion potential, such as the mechanisms of
long-distance dispersal and propagule pro-
duction, as opposed to precise estimation of
long-distance dispersal (8). Rates will remain
uncertain, but we may improve our ability to
predict introduced species that can success-
fully invade (17).

The developing capacity for prediction
requires careful model evaluation, which can
involve model selection, model averaging, or
both. Model selection methods are routinely
used in ecological applications. Because the
models themselves are often uncertain, eco-
logical forecasting may eventually rely more
heavily on model averaging. Techniques for
model evaluation developed in econometrics,
finance, and meteorology make use of hind
casting (18), including the ability to identify
turning points and events (12).

Failing to accommodate the important
sources of stochasticity makes for a forecast
that contains less information than it purports
(confidence intervals are misleadingly nar-
row). In the case of western North America’s
Northern Spotted Owl (Strix occidentalis),
confidence intervals on population growth
rates became basis for policy (19). Ecological
models typically ignore variability among in-
dividuals, which is large and has impact on
population growth and decline. New compu-
tational approaches represented by hierarchi-
cal models accommodate multiple stochastic
elements (20) and can be used to estimate the
uncertainty in growth of populations having
variability among individuals (21). New ap-
plications of these recent techniques are used
in weather and climate models (22), but they
are not exploited by ecologists. Inevitable
failures that result from forecast uncertainties
that are unrealistic would eventually erode
confidence (9).

Data from Experiments and
Monitoring
Technical construction of forecasts requires
initiatives to develop new or augment ex-
isting data networks and to support exper-
imental research. Experimental and obser-
vational data that extend to landscapes or
regions are a foundation for forecasting
capability. Large experiments are critical,
because landscape processes are often un-

predictable from fine-grained studies (23,
24 ). The feedbacks from vegetation to cli-
mate become important only when the spa-
tial extent of a study exceeds a critical
threshold. Factorial, whole-ecosystem ex-
periments with CO2, temperature, moisture,
and nutrients may be the only way to de-
termine forest responses to global change
(25). For example, free-air CO2 enrichment
(FACE) studies show that the water stress
expected from studies of individual plants
may not be realized in an intact stand (26 ).

Data networks can provide a baseline for
forecasting. Missing variables, low resolu-
tion, inadequate duration, temporal and spa-
tial gaps, and declining coverage are perva-
sive limitations. Due to abandonment of pre-
cipitation, stream-height, and discharge gaug-
es, the capacity to forecast droughts and
floods was greater 30 years ago than it is
today. Countries with the poorest hydrologi-
cal networks (e.g., sub-Saharan Africa, arid
regions of the former Soviet Union) have the
most pressing water needs (27). The problem
is not restricted to developing and transitional
economies. There is an average density of
one stream gauge per 1024 km2 in the lower
48 states of the United States (28). Since
1971 there has been a 22% decline in gauging
stations that record flow on small U.S. rivers.
Sustained monitoring is needed that can
dovetail with forecasts in an adaptive feed-
back design.

The ability to anticipate exotic invasions
would benefit from historic records of species
introductions and their vectors (e.g., ship traf-
fic). Where eventual colonization seems in-
evitable, forecasts may guide mitigative ac-
tions. Disease forecasting can also require
extensive spatial and temporal data, such as
those used to inform intervention for foot-
and-mouth disease (29). Prediction of child-
hood epidemics depends on long records of
births and vaccinations (30). Cholera and ma-
laria predictions require climate data, which
determine growth and/or spread of pathogens
and vectors (31).

Developing technologies do not fully
compensate for sparse data, but they promise
to facilitate forecasting. Hydrologic forecast-
ing and remote sensing, together with geo-
physical tomography, can provide high-reso-
lution coverage of precipitation and the ef-
fects of dams and irrigation (32). Biogeo-
chemical cycles, hydrology, and biodiversity
forecasts require land inventory and census
data (33) in combination with satellite-based
data (34). Satellites could be used to monitor
habitat loss, a predictor of extinction risk.

Satellite data could be used to develop
global scenarios for disease spread in re-
sponse to environmental degradation and cli-
mate change (35). Prevalence of hantavirus
pulmonary syndrome (HPS), a viral disease
characterized by acute respiratory distress
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that has a high death rate, depends on the
infection rates of its host, the common deer
mouse (Peromyscus maniculatus) (36). The
1993 HPS outbreak in the Southwest United
States was attributed to unusual weather of
1991–1992 that was quantified from Landsat
Thematic Mapper satellite imagery. A model
developed for the 1993 outbreak, which fol-
lowed an El Niño year, provided accurate
predictions for the 1995 non–El Niño year.
Likewise, surveillance networks could im-
prove understanding of climate constraints on
malaria and its vectors (37, 38) and of climate
events that forewarn of cholera risk (31).

Forecasts in Decision-Making
A 1981 report (39) predicting that the Eur-
asian zebra mussel (Dreissena polymorpha)
would become established in North America
gained the attention of neither policy-makers
nor the general public. Zebra mussels were
discovered 5 years later and soon spread
throughout the upper Midwest. In the Great
Lakes alone, annual mitigation costs to indus-
try of $20 to $100 million (38) will continue
into the foreseeable future. Unquantified,
noncommercial costs include losses of biodi-
versity, such as the extirpation of native
clams (40), and shifts in ecosystem energy
flows and productivity (41). No regulatory
actions can be traced to the 1981 prediction.
The invasion itself prompted a flurry of reac-
tive legislation, culminating in the Nonindig-
enous Aquatic Nuisance Prevention and Con-
trol Act of 1990.

The zebra mussel experience highlights
issues concerning the state of environmen-
tal science and its place in planning for
global change. A developing capacity for
prediction has not yet been integrated as
part of a comprehensive prediction process
(9, 42). Missed opportunities to engage
ecological understanding have become a
source for growing concern. The zebra
mussel experience illustrates that the $138
billion spent annually on control of nonin-
digenous species (NIS) (43) can be blamed,
in part, on failure to communicate. Fore-
casts based solely on scientific objectives
have little impact on policy (44 ) because
there is no stakeholder (9). Climate change
forecasts developed under the Intergovern-
mental Panel on Climate Change have been
influential, in part, because they respond to
a request from governments. Priorities for
ecological forecasting must come from di-
alogue that ensures active participation by
policy-makers, managers, and the general
public.

Some experience suggests that a proactive
approach holds promise. Chlorofluorocarbon
use has declined, in part, due to the Montreal
Protocol, which was drafted in response to
scenarios for ozone-depleting chemicals in
the atmosphere. Scenarios helped propel the

ban of DDT and the Kyoto discussions on
greenhouse gasses. Policy-makers can re-
spond to research that is motivated by man-
agement or conservation interests. For exam-
ple, population studies, together with 30-year
discharge records, were used by the Puerto
Rican Aqueduct and Sewage Authority to
develop a system for water withdrawal from
streams to meet human demands while min-
imizing the loss of migrating freshwater
shrimp (45).

Ecologists should increasingly consider
their own role in the decision-making pro-
cess. “Bet-hedging” uncertainty may in-
volve choosing policies that are relatively
insensitive to uncertainty, that increase the
ability of ecosystems to provide services
even if a surprise occurs, or both. Ecolo-
gists can help develop options. For exam-
ple, maintaining local species diversity and
heterogeneity of land cover may stabilize
regional primary production despite uncer-
tain changes in climate. Limnologists have
shown that optimal nutrient loadings to
lakes decrease if the information content of
ecological forecasts is taken into account
(46 ). Ecologists have found correctives for
eutrophication that offer managers a num-
ber of options.

In situations where uncertainties are large
and impossible to quantify, information con-
tent is necessarily low and decisions can be
complex. Rarely can policies direct an out-
come. Instead, they are often designed to
affect outcomes by influencing choices made
by vast numbers of people. The effects can
extend beyond their intended targets and even
have countervailing impacts. For example,
restrictions on tree harvest in one region can
lead to intensified harvesting elsewhere, as
trade offsets local scarcity. Thus, environ-
mental restrictions can lead to export of en-
vironmental hazard from one jurisdiction to
another.

When reaction to anticipated change is pos-
sible, it is appropriate to explore scenarios that
are as consistent as possible with current scien-
tific understanding but are not predictions (47,
48). Scenarios can embrace ambiguous and un-
controllable drivers, such as climate or global-
ization of markets, and nonlinear and unpredict-
able dynamics, such as the reflexive responses
of people. Scenarios provide insight into drivers
of change, implications of current trajectories,
and options for action. Alternative policies can
be considered in light of contrasting scenarios
and to compare their robustness to possible
futures.

Ecologists may provide decision-makers
with information as part of an integrated
perspective of vulnerability to extreme
events and their potential consequences.
For example, the tragic human toll of Hur-
ricane Mitch in Central America was exac-
erbated by degradation due to overexploi-

tation of fuels and construction materials.
Ecologists could have foreseen that the
floods of Hurricane Floyd would release
hog waste into North Carolina rivers and
sounds. Ecological forecasting may target
the vulnerabilities that decision-makers
must consider, if not the events themselves.

Next Steps
Linking science with decision-making will
depend on scientific accuracy and effective
communication. Sources of uncertainty,
their potential impacts on forecast informa-
tion, and the identification of overriding
controls that change slowly must be con-
sidered when deciding where efforts can be
of most value. Two broad classes of rec-
ommendations address these goals. First is
a definition of forecasting priorities
through dialogue involving scientists, man-
agers, and policy-makers. Priorities are
based on potential benefits balanced
against costs of business as usual. They
should meet user needs and be scientifical-
ly feasible.

The second recommendation involves
definition of a science agenda that includes
(i) identifying data and research needs and
(ii) setting priorities for estimation, propaga-
tion, and communication of uncertainty. Fo-
cus should be on the problems for which
forecasts are now possible and those that are
not presently forecastable but could become
forecastable within a decade.
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