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Summary: Recent development in the theory of the covariance between relatives in crosses from two populations, under additive inheritance, are used to predict breeding values (BV) by BLUP using animal models. The consequences of incorrectly specifying the covariance matrix of BV is discussed. The theory of the covariance between relatives in crosses from two populations is extended for predicting BV in models with multiple traits. A numerical example illustrates the prediction procedures.
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INTRODUCTION
A common method used to  genetically  improve a local population is by planned migration of genes from a superior one. For example, in developing countries, U.S. Holstein sires are mated to local cows in order to genetically improve the local Holstein population. Genetic evaluation in such populations must take into consideration the genetic differences between the local and the superior populations.Best linear unbiased prediction (BLUP) is widely used for genetic evaluation (Henderson, 1984). BLUP methodology requires modelling genotypic means and covariances. Genetic groups are used to model differences in genetic means between populations (Quaas, 1988). However, populations can also have different genetic variances. Under additive inheritance, Elzo (1990) provided theory to incorporate heterogeneous genetic variances in genetic evaluation by BLUP. His procedure is based on computing  the additive variance for a crossbred animal as a weighted mean of the additive variances of the parental populations plus one half the covariance between parents. Lo et al (1993) showed that Elzo's theory did not account for additive variation created by segregation of alleles between populations with different gene frequencies. For example, even though the additive variance for an F2 individual should be higher than for an F1, due to segregation (Lande, 1981), Elzo's formulation gives the same variance for both. Lo et al (1993) provided theory to incorporate segregation variance in computing covariances between crossbred relatives, and to invert the genetic covariance matrix efficiently. 

The objectives of this paper are: 1) to demonstrate how the theory of Lo et al (1993) can be used for genetic evaluation, i.e. to predict breeding values (BV), by BLUP; 2) to study the consequences of usi2ng an incorrect genetic covariance matrix on prediction of BV; and 3) to extend the theory of Lo et al (1993) to accomodate multiple traits. A numerical example is used to illustrate the principles introduced here.

MODEL
Even though the theory presented by Lo et al (1993) allowed for several breeds or strains within a breed, we focus on the case of two. A typical situation in beef or dairy cattle is when a "local" (L) strain or breed is crossed with an "imported" (I) one. Usually the program starts by mating genetically superior L females with I males to produce F1 progeny. Then, superior F1 females are mated to I sires to produce backcross progeny. The program is continued by mating superior backcross females to I sires repeatedly. It should be noted that L, F1 and backcross sires are also used to produce progeny. Thus, the crosses generated by such a program may include F1 = I x L, F2 = F1 x F1, BI = I x F1, BL = F1 x L, BII = BI x F1, 5/8I = BI x F1, 3/8I = BI x L, etc. It is shown below how genetic evaluations for such a mixture of crossbred animals can be obtained by BLUP using Henderson's (1984) mixed model equations (MME). 

Genetic evaluations are based on a vector of phenotypic records (y), which can be  modelled as: 
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where β is a vector of non-genetic fixed effects, a is a vector of additive genetic values or BV and e is a vector of random residuals, independent of a, with null mean and covariance matrix R. Although R can be any general symmetric matrix, in general it is taken to be diagonal, and this simplifies computing solutions of β and predictions of a. The incidence matrices X and Z relate β and a, respectively, to y. The mean and the covariance matrix of the vector of BV (a) for crossbred individuals are modelled as: 
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and
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where g is a vector of genetic group effects for individuals in the I and L populations, Q is a matrix relating a with the genetic groups. If there is only one group on each breed, Q specifies the breed composition for each individual. The matrix G contains the variances and covariance among BV as defined by Lo et al (1993). 

In modelling the mean of a, genetic groups are only assigned to "phantom" parents of known animals following the method proposed by Westell et al (1988). Quaas (1988) showed that Q can be expressed as:
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where P relates progeny to parents, Pb progeny to phantom parents, and Qb is an incidence matrix that relates phantom parents to genetic groups. Elements in each row of [Pb:P] are all zero, except for two 2's in the columns pertaining to the parents of the animals in a. It should be stressed that the above  model for a assumes additive inheritance (Thompson, 1979; Quaas, 1988; Lo et al, 1993). 

In the genetic grouping theory of Quaas (1988), all the groups are assumed to have the same additive variance. In this model, however, we allow the I and L populations to have different additive variances, and the variances and covariances of crossbred animals are computed following the theory of Lo et al (1993). They showed that the covariance between crossbred relatives can be computed using the tabular method for purebreds (Emik and Terril, 1949; Henderson, 1976), provided that the variance of a crossbred individual i is computed as:
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where j and k are the parents of i, and fjI, for example, is the breed I composition of dam j,  σ2AL is the additive variance for population L, σ2AI is the additive variance for population I, and σ2ALI is the segregation variance, which results from differences in gene frequencies between the L and I populations. The term segregation variance was used by Wright (1968) and Lande (1981) to refer to the additional genetic variance due to segregation in the F2 generation over that in the F1. Following Quaas (1988), Lo et al (1993) further showed that the inverse of the genetic covariance matrix (G), required to setup Henderson's MME, can be constructed as:
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where Gέ is a diagonal matrix with the i-th diagonal element defined as:
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Note that these elements are linear functions of σ2AL, σ2AI and σ2ALI. 

PREDICTION OF BREEDING VALUES
Following Quaas (1988), MME for a model with genetic groups can be written as:
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where
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and
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The matrix H can be constructed efficiently using algorithms already available (e.g., Groeneveld and Kovac, 1990). Quaas (1988) gave rules to construct Σ efficiently for a model with homogeneous additive variances across genetic groups. To construct Σ efficiently for a model with heterogeneous additive variances, replace x (= 4/[number of unknown parents + 2]) in the rules of Quaas (1988) with 1/Gέi.

CONSEQUENCES OF USING AN INCORRECT G
Henderson (1975a) showed that using an incorrect G leads to predictions that are unbiased but do not have minimum variance. His results are employed here to examine the consequences of using the same additive variance (σ2A*) for L, I and crossbred animals. 

Let Caa be the submatrix of a g-inverse of the right-hand-side of the MME corresponding to a, but calculated with G* = Aσ2A* . Then, as in Henderson (1975a) and Van Vleck (1993), the prediction error variance (PEV) of a is not equal to Caa, but is:
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where G is the correct covariance matrix of a. Now, let D be a diagonal matrix with the ith diagonal element being equal to 0.5[1-0.5(FSi+FDi], if the father (Si) and the mother (Di) of i are known, and FSi is the inbreeding coefficient of Si. Also, Dii = 0.25(3-FiS), if only the sire of i is known, and Dii = 0.25(3-FDi) if only the dam of i is known. Finally, if both parents of i are unknown Dii=1. With this definition of D and after some algebra, (11) becomes equal to:
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Therefore, PEV of a obtained from Caa will be incorrectly estimated by the second term on the right of (11) or (12). As this term depends on the structure of Gέ and D no general result can be given. However, if Caa(I-P')D-1(Gέ-D)D-1(I-P')Caa is positive definite, it adds up to Caa and true PEV is underestimated. This happens if both (Gέ-D) and Caa(I-P')D-1 are positive definite (see, for example, theorem A.9 in page 183 of Toutenburg, 1982). Now, reparameterize fixed effects so that [X:ZQ] is a full rank matrix. Then, [Caa(I-P')D-1]-1 = D(I-P')-1(Caa)-1 and Caa(I-P')D-1 is positive definite. Finally, if (Gέ-D) is positive definite its diagonal elements are positive (Seber, 1977, page 388), which in turn happens when the diagonal elements of Gέ are strictly greater than corresponding elements of D. For example, this may happen whenever σ2ALI contributes to the variance of crossbred individuals (such as F2 or 5/8I), and this variance parameter is ignored. Under these conditions PEV will be underestimated, and the amount of underestimation will depend on the magnitude of σ2ALI.

It has been shown that if all data employed to make selection decisions are available, then BLUP of a can be computed ignoring selection (Henderson, 1975b; Goffinet, 1983; Fernando and Gianola, 1990). This result only holds when the correct covariance matrix of a is used to compute BLUP. Thus, in the improvement of a local breed by mating superior I sires to selected L females, the use of the same additive variance for the I and L populations will give biased results if the two populations are known to have different additive variances and the process of selection and mating to superior males is repeated.

MULTIPLE TRAITS
The theory presented by Lo et al (1993) can be extended to obtain BLUP with multiple traits. Consider the extension for two traits: X and Y. To obtain BLUP for X and Y the additive covariance matrices for traits X and Y, and between traits X and Y are needed. The covariance matrix for traits X and Y can be computed as described by Lo et al (1993). It is shown below how to compute the additive covariance matrix between traits X and Y.

Following the reasoning employed by Lo et al (1993) to derive the additive variance for a crossbred individual, it can be shown that the additive covariance between traits X and Y for a crossbred individual is:
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where σA(XY)L and σA(XY)I are the additive covariances for traits X and Y in populations L and I, respectively, and σA(XY)LI is the additive segregation covariance for populations L and I. 

Provided that the covariance between traits X and Y for a crossbred individual is computed using equation (9), the covariance between X and Y between crossbred individuals i and i' can be computed as:
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provided that i' is not a direct descendant of i.

Now let a (2q x 1) be the vector containing the BV of q animals for the two traits, ordered by trait within animal. Then, G is the 2q x 2q covariance matrix between traits and individuals. Following Elzo (1990) the inverse of G, required to setup Henderson's MME, can be written as:
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 where for individual l, the diagonal elements of Gεl can be calculated by equation (7), and the off-diagonals elements can be computed as:
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All covariances in the above equation are functions of σA(XY)L, σA(XY)I and σA(XYL)I, and can be computed using equations (13) and (14).

Equation (15) gives rise to simple rules to setup MME for two or more traits. By appropriately redefining all vector and matrices to include two or more traits, equations (8), (9) and (10) are valid for the multiple trait situation. Again, matrix H can be constructed efficiently by commonly used algorithms (Groeneveld and Kovac, 1990). Cantet et al (1992) gave rules to construct Σ efficiently for a model with homogeneous additive (co)variances across genetic groups. Their algorithm can be modified to construct Σ efficiently for a model with heterogeneous additive (co)variances as follows. Let:

ir = equation number of individual i for the rth trait.

jr = equation number of the sire of i or its sire group (if base sire) for trait r.

kr = equation number of the dam of i or its dam group (if base dam) for trait r.

Now let t be the number of traits, for m = 1 to t and n = 1 to t, add to Σ the following 9 contributions:

Contribution

To element(s)
     Gέimn-1         (im,in)

 -0.5Gέimn-1         (im,jn); (jm,in); (im,kn); (km,in)

 0.25Gέimn-1         (jm,jn); (jm,kn); (km,jn); (km,kn)

where Gέimn-1 is element (m,n) of the inverse of the t x t matrix Gεi, which is associated to individual i. If Σ is full-stored, every animal makes 9t2 contributions. For example, if two traits are considered (t = 2), there are 9(22) = 36 contributions. If Σ is half-stored, there are [9t(t-1)]/2 + 6t contributions. For t = 2, each individual makes 21 contributions to the upper triangular part of half-stored matrix Σ.

To obtain BLUP under a maternal effects model (Willham, 1963), the additive covariance matrices for the direct effect, the maternal effects, and between the direct and maternal effects are needed. These matrices can be computed using the theory used to compute the covariance matrices for traits X and Y as described above.

NUMERICAL EXAMPLE
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Consider a single trait situation where a sire from breed I (animal 1) serves two dams: animal 2, from breed I, and animal 3 from breed L. Individuals 1 and 2 are the parents of 4 (purebred I), and 1 and 3 are the parents of 5 (an F1 male). Finally, the F2 animal 7 is the offspring of 5 and 6, the latter being an F1 dam with unknown parents. Individuals 1, 4 and 5 are males and the rest are females. Age at measure and observed data for animals 2 to 7 are 100 (age), 100 (data); 110, 103; 95, 160; 98, 175; 106, 105 and 100, 114; respectively. There are 2 genetic groups for breed I and one for L. The model of evaluation includes fixed effects of age (as a covariate), sex and genetic groups (A1, A2 and B), and random BV for animals 1 through 7. In order for [X:ZQ] to have full rank we imposed the restriction: sex 1 + sex 2 = 0, or sex 1 = -sex 2. Hence, β contains only two parameters: 1) the age covariate, and 2) the sex 1 effect (or -sex 2). Matrices y, X and Q are then equal to:

Variance components are σ2AL = 80, σ2AI = 120 and σ2ALI = 50. Using (7), the diagonal elements of matrix Gε (the variances of mendelian residuals) are 80, 80, 120, 40, 50, 100 and 100, for animals 1 to 7 respectively. Residual variance is R = I6(400). Matrix G is:
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MME are equal to:
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Solutions are -2.903201,  -28.95692, 402.73785, 431.59906, 452.07844, 402.68086, 417.28243, 452.16393, 409.6967, 427.70734, 441.69628 and 434.41686. The large absolute values of the solutions are due to multicollinearity associated with genetic groups in the model for the small example worked. This is evidenced by a small eigenvalue (4.36 x 10-7) in the coefficient matrix. Van Vleck (1990) obtained a similar result in an example with genetic groups for direct and maternal effects. If groups are left out of the model, solutions are 1.3540226 for the age effect, -36.19053 for the sex 1 effect, and 0.602659, -0.247433, -1.030572, -0.276959, 1.1075823, 0.6457529, 3.6589865 for the BV of animals 1 to 7, respectively. The smallest eigenvalue is 0.0046413, almost ten thousand times larger than the situation where genetic groups are in the model.

The consequences of assuming an incorrect G can be seen by taking G* = A(100). The value of 100 for σ2A* is chosen because it is the average between σ2AL = 80 and σ2AI = 120. To alleviate the problem associated with multicollinearity, the system is solved using regular MME (Henderson, 1984) rather than the QP transformed system (8). Therefore, PEV are estimated for BV deviated from their means. Incorrect PEV for animals 1 to 7 are 99.91, 99.66, 99.91, 98.30, 98.66, 99.66 and 99.91, respectively. Whereas true PEV for the same animals computed by means of (11) or (12) (or direct inversion of the MME) are: 79.94, 79.79, 119.88, 78.98, 98.52, 99.66, and 149.59 for animals 1 to 7, respectively.

DISCUSSION
A model has been presented to predict BV of different crosses between two populations under an additive type of inheritance. It allows for different additive means and variances. Computations are as simple as when there is only one σ2A and, as usual, R is a diagonal matrix. A practical application is the analysis of data from crosses between "foreign" and "local" strains of a breed, as in dairy or beef breeding. Also, records from registered vs. grade animals, or "selected vs. unselected", etc, can be analyzed in this fashion. Although developments presented were in terms of two populations, inclusion of more than two can be done as indicated by Lo et al (1993). With p being the number of populations, the number of parameters in G is [p(p+1)]/2, so that for p = 4 there are 10 variances to consider. Some of these estimates may be highly correlated depending on the type and distribution of the crosses involved.

The approach taken in the present paper differs from Elzo (1990) in the inclusion of the segregation variance (σ2ALI). The magnitude of this parameter depends on differences in gene frequencies between the two populations (Lo et al, 1993). The change in gene frequency due to selection is inversely related to the number of loci because change in gene frequency at a locus due to selection is proportional to the magnitude of the average effect of gene substitution at that locus (Pirchner, 1969, page 145), and the magnitude of average effects across loci tend to be inversely related to the number of loci. Thus, σ2ALI due to different selection criteria in two populations is expected to be inversely related to the number of loci. The change in gene frequency due to other forces (mutation, migration, and random drift) is not related to the magnitude of average effects. Thus, σ2ALI due to differences in gene frequency between populations brought about by these forces is not related to the number of loci. Now, the greater the value of σ2ALI, the larger the difference between the predictors calculated following the approach of Elzo (1990) and the one used in the present. This is due to σ2ALI not only entering into the diagonal elements of G, but also in off-diagonals which are functions of the diagonal elements (Lo et al, 1993). For example, consider the additive covariance between paternal half sibs (cov(PHS)) i and i', from common sire s and unrelated dams. By repeated use of expression (10) in Lo et al (1993), cov(PHS) is equal to:
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Expression (17) shows that cov(PHS) is a function of the additive variance of the sire, and is not a function of the additive variance present in progeny genotypes. For I, F1, BI or F2 sires, cov(PHS) are equal to:

Sire




cov(PHS)
 I

0.2500 σ2AI
 F1

0.1250 σ2AI + 0.1250 σ2AL 

 BI

0.1875 σ2AI + 0.0625 σ2AL + 0.1250 σ2ALI
 F2

0.1250 σ2AI + 0.1250 σ2AL + 0.2500 σ2ALI
Note that σ2ALI enters into the covariance of individuals whose sire belongs to later generations than the F1 (e.g. BI or F2). It must be pointed out that, although predictions are still unbiased, ignoring σ2ALI would result in a larger shrinkage of predictions in (8) than otherwise. As there are no estimates of σ2ALI so far, nothing can be say about the magnitude of the parameter on genetic variation of economic traits in livestock.

If dominance is not null, the model should be properly modified to take into account this non-additive genetic effect. Proper specification of the variance-covariance matrix for additive and domimance effects in crosses of two populations can involve as many as 25 parameters for a single trait (Lo et al, 1995). Therefore, predictors of BV and dominance deviations may be difficult to compute for a general situation, involving animals from several crossbred genotypes. Lo (1993) presented an efficient algorithm for computing BLUP in the case of two and three-breed terminal crossbreeding systems under additive and dominance inheritance. 

Up to this point the animal model has been employed. However, the "reduced animal model" (Quaas and Pollak, 1980) can alternatively be used by properly writing matrix Z with 2's, whenever a BV of a "non-parent" (an animal that has no progeny in the data set) is expressed as a function of its parental BV. Residual genetic variances are obtained by means of expression (7).

In order to solve equations (8) the parameters σ2AL, σ2AI, σ2ALI, and the residual components, have to be known. Usually variance components are unknown and should be estimated from the data. Elzo (1994) developed expressions for Restricted Maximum Likelihood (REML) estimators of variance components (including σ2ALI) in multibreed populations, through the Expectation-Maximization algorithm.

CONCLUSIONS
For one or several traits governed by additive effects, predictions of BV from crosses between two populations can be obtained by means of animal models that allow for different additive means and heterogeneous additive genetic (co)variances. Calculations required are similar to the ones with homogeneous additive (co)variances.
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